Zobrazeno 1 - 10
of 292
pro vyhledávání: '"Schober, Michael"'
We propose a fast, simple and robust algorithm for computing shortest paths and distances on Riemannian manifolds learned from data. This amounts to solving a system of ordinary differential equations (ODEs) subject to boundary conditions. Here stand
Externí odkaz:
http://arxiv.org/abs/1901.07229
Autor:
Zitek, Andreas, Oehm, Johannes, Schober, Michael, Tchaikovsky, Anastassiya, Irrgeher, Johanna, Retzmann, Anika, Thalinger, Bettina, Traugott, Michael, Prohaska, Thomas
Publikováno v:
In Fisheries Research April 2023 260
Publikováno v:
In Composites Science and Technology 29 September 2022 228
Autor:
Conrad, Frederick G., Schober, Michael F., Hupp, Andrew L., West, Brady T., Larsen, Kallan M., Ong, Ai Rene, Wang, Tianheao
Publikováno v:
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 17, 2, 135-170
This study investigates the extent to which video technologies - now ubiquitous - might be useful for survey measurement. We compare respondents' performance and experience (n = 1,067) in live video-mediated interviews, a web survey in which prerecor
Externí odkaz:
https://www.ssoar.info/ssoar/handle/document/88103
Recently there has been increasing interest in probabilistic solvers for ordinary differential equations (ODEs) that return full probability measures, instead of point estimates, over the solution and can incorporate uncertainty over the ODE at hand,
Externí odkaz:
http://arxiv.org/abs/1709.08471
Like many numerical methods, solvers for initial value problems (IVPs) on ordinary differential equations estimate an analytically intractable quantity, using the results of tractable computations as inputs. This structure is closely connected to the
Externí odkaz:
http://arxiv.org/abs/1610.05261
Publikováno v:
In Composites Science and Technology 18 August 2021 212
Autor:
Hohe, Jörg, Neubrand, Achim, Fliegener, Sascha, Beckmann, Carla, Schober, Michael, Weiss, Klaus-Peter, Appel, Simon
Publikováno v:
In Composites Part A February 2021 141
Runge-Kutta methods are the classic family of solvers for ordinary differential equations (ODEs), and the basis for the state of the art. Like most numerical methods, they return point estimates. We construct a family of probabilistic numerical metho
Externí odkaz:
http://arxiv.org/abs/1406.2582