Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Schnabel, Ofir"'
Autor:
Schnabel, Ofir
We classify crossed product gradings for arbitrary groups and fields up to several equivalence relations in terms of group actions and their orbits.
Externí odkaz:
http://arxiv.org/abs/2402.07704
Autor:
Ginosar, Yuval, Schnabel, Ofir
Quotient grading classes are essential participants in the computation of the intrinsic fundamental group $\pi_1(A)$ of an algebra $A$. In order to study quotient gradings of a finite-dimensional semisimple complex algebra $A$ it is sufficient to und
Externí odkaz:
http://arxiv.org/abs/2209.02487
Publikováno v:
In Advances in Mathematics December 2024 458 Part B
This paper is centered around the classical problem of extracting properties of a finite group $G$ from the ring isomorphism class of its integral group ring $\mathbb{Z} G$. This problem is considered via describing the unit group $\mathcal{U}( \math
Externí odkaz:
http://arxiv.org/abs/2203.17220
Autor:
Ginosar, Yuval, Schnabel, Ofir
Publikováno v:
In Journal of Algebra 1 February 2024 639:532-573
Autor:
Margolis, Leo, Schnabel, Ofir
Publikováno v:
In Journal of Pure and Applied Algebra April 2023 227(4)
Autor:
Gordienko, Alexey, Schnabel, Ofir
Publikováno v:
Algebra Colloquium, 26:4 (2019), 643-664
When one studies the structure (e.g. graded ideals, graded subspaces, radicals, ...) or graded polynomial identities of graded algebras, the grading group itself does not play an important role, but can be replaced by any other group that realizes th
Externí odkaz:
http://arxiv.org/abs/1805.04073
Autor:
Margolis, Leo, Schnabel, Ofir
We prove that the Herzog-Sch\"onheim Conjecture holds for any group $G$ of order smaller than $1440$. In other words we show that in any non-trivial coset partition $\{g_i U_i\}_{i=1}^n $ of $G$ there exist distinct $1 \leq i, j \leq n$ such that $[G
Externí odkaz:
http://arxiv.org/abs/1803.03569
Autor:
Schnabel, Ofir, Simpson, Jamie
We present a new approach to deal with Fraenkel's conjecture, which describes how the integers can be partitioned into sets of rational Beatty sequences, in the case where the numerators of the moduli are equal. We use this approach to give a new pro
Externí odkaz:
http://arxiv.org/abs/1709.08190
Autor:
Gordienko, Alexey, Schnabel, Ofir
Publikováno v:
J. Algebra, vol. 501 (2018), 435-457
When one studies the structure (e.g. graded ideals, graded subspaces, radicals, ...) or graded polynomial identities of graded algebras, the grading group itself does not play an important role, but can be replaced by any other group that realizes th
Externí odkaz:
http://arxiv.org/abs/1704.07170