Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Schmitz, Kerstin"'
We show existence and pathwise uniqueness of probabilistically strong solutions to a pseudomonotone stochastic evolution problem on a bounded domain $D\subseteq\mathbb{R}^d$, $d\in\mathbb{N}$, with homogeneous Dirichlet boundary conditions and random
Externí odkaz:
http://arxiv.org/abs/2403.11917
We address an original approach for the convergence analysis of a finite-volume scheme for the approximation of a stochastic diffusion-convection equation with multiplicative noise in a bounded domain of $\mathbb{R}^d$ (with $d=2$ or $3$) and with ho
Externí odkaz:
http://arxiv.org/abs/2304.02259
We propose a two-point flux approximation finite-volume scheme for a stochastic non-linear parabolic equation with a multiplicative noise. The time discretization is implicit except for the stochastic noise term in order to be compatible with stochas
Externí odkaz:
http://arxiv.org/abs/2303.13125
Autor:
Schmitz, Kerstin, Wittbold, Petra
In this paper we prove existence of entropy solutions to the time-fractional porous medium type equation, $$\partial_t[k\ast(u-u_0)]-\operatorname{div} (A(t,x)\nabla\varphi(u))=f\text{ in }Q_T=(0,T)\times\Omega,$$ with Dirichlet boundary condition, i
Externí odkaz:
http://arxiv.org/abs/2302.06399
Publikováno v:
ESAIM Math. Model. Numer. Anal. 57 (2023), no.2, 745-783
We study here the approximation by a finite-volume scheme of a heat equation forced by a Lipschitz continuous multiplicative noise in the sense of It\^o. More precisely, we consider a discretization which is semi-implicit in time and a two-point flux
Externí odkaz:
http://arxiv.org/abs/2203.09851
We show well-posedness of the $p$-Laplace evolution equation on $\mathbb{R}^d$ with square integrable random initial data for arbitrary $1
Externí odkaz:
http://arxiv.org/abs/2012.10148
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The aim of this paper is to address the convergence analysis of a finite-volume scheme for the approximation of a stochastic non-linear parabolic problem set in a bounded domain of $\mathbb{R}^2$ and under homogeneous Neumann boundary conditions. The
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ef0e489145207a5eb62ad08516d14bc0
https://hal.science/hal-04077628
https://hal.science/hal-04077628
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Schmitz, Kerstin1 (AUTHOR), Zimmermann, Aleksandra1 (AUTHOR)
Publikováno v:
Stochastic Analysis & Applications. 2023, Vol. 41 Issue 5, p892-917. 26p.