Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Schiassi, Enrico"'
Publikováno v:
In Journal of Computational and Applied Mathematics 15 January 2024 436
In this work we apply a novel, accurate, fast, and robust physics-informed neural network framework for data-driven parameters discovery of problems modeled via parametric ordinary differential equations (ODEs) called the Extreme Theory of Functional
Externí odkaz:
http://arxiv.org/abs/2008.05554
Autor:
Schiassi, Enrico, Leake, Carl, De Florio, Mario, Johnston, Hunter, Furfaro, Roberto, Mortari, Daniele
In this work we present a novel, accurate, and robust physics-informed method for solving problems involving parametric differential equations (DEs) called the Extreme Theory of Functional Connections, or X-TFC. The proposed method is a synergy of tw
Externí odkaz:
http://arxiv.org/abs/2005.10632
Publikováno v:
The Journal of the Astronautical Sciences (2020)
In this paper we present a new approach to solve the fuel-efficient powered descent guidance problem on large planetary bodies with no atmosphere (e.g. the Moon or Mars) using the recently developed Theory of Functional Connections. The problem is fo
Externí odkaz:
http://arxiv.org/abs/2001.03572
Autor:
D’Ambrosio, Andrea, Schiassi, Enrico, Johnston, Hunter, Curti, Fabio, Mortari, Daniele, Furfaro, Roberto
Publikováno v:
In Advances in Space Research 15 June 2022 69(12):4198-4220
Publikováno v:
In Annals of Nuclear Energy March 2022 167
Autor:
Schiassi, Enrico, Furfaro, Roberto, Leake, Carl, De Florio, Mario, Johnston, Hunter, Mortari, Daniele
Publikováno v:
In Neurocomputing 7 October 2021 457:334-356
Publikováno v:
In Acta Astronautica May 2021 182:361-382
Publikováno v:
In Journal of Quantitative Spectroscopy and Radiative Transfer January 2021 259
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.