Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Schep, Anton R."'
Autor:
Schep, Anton R.
Let $E$ be a complex Banach lattice and $T$ is an operator in the centrum $Z(E)=\{T: |T|\le \lambda I \mbox{ for some } \lambda\}$ of $E$. Then the essential norm $\|T\|_{e}$ of $T$ equals the essential spectral radius $r_{e}(T)$ of $T$. We also prov
Externí odkaz:
http://arxiv.org/abs/2204.03805
Autor:
Schep Anton R.
Publikováno v:
Concrete Operators, Vol 10, Iss 1, Pp 109-122 (2023)
Let EE be a complex Banach lattice and TT is an operator in the center Z(E)={T:∣T∣≤λIfor someλ}Z\left(E)=\left\{T:| T| \le \lambda I\hspace{0.33em}\hspace{0.1em}\text{for some}\hspace{0.1em}\hspace{0.33em}\lambda \right\} of EE. Then, the ess
Externí odkaz:
https://doaj.org/article/ca5de26246f94f5b9c3a893fe8fcd0e4
Autor:
Chen, Jin Xi, Schep, Anton R.
Let $W$, $X$, $Y$ and $Z$ be Dedekind complete Riesz spaces. For $A\in L^{r}(Y, Z)$ and $B\in L^{r}(W, X)$ let $M_{A,\,B}$ be the two-sided multiplication operator from $L^{r}(X, Y)$ into $L^r(W,\,Z)$ defined by $M_{A,\,B}(T)=ATB$. We show that for e
Externí odkaz:
http://arxiv.org/abs/1609.06913
Autor:
Schep, Anton R
Let $E$ and $F$ be Banach lattices. We show first that the disjointness preserving linear functionals separate the points of any infinite dimensional Banach lattice $E$, which shows that in this case the unbounded disjointness operators from $E\to F$
Externí odkaz:
http://arxiv.org/abs/1607.01423
Autor:
Schep, Anton R.
Given two Banach function spaces we study the pointwise product space E.F, especially for the case that the pointwise product of their unit balls is again convex. We then give conditions on when the pointwise product E . M(E, F)=F, where M(E,F) denot
Externí odkaz:
http://arxiv.org/abs/0803.4336
Autor:
Schep, Anton R.
Publikováno v:
The American Mathematical Monthly, 2003 Jun 01. 110(6), 536-538.
Externí odkaz:
https://www.jstor.org/stable/3647910
Autor:
Schep, Anton R.
Publikováno v:
In Indagationes Mathematicae 14 March 2014 25(2):366-375
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Schep, Anton R.
Publikováno v:
Proceedings of the American Mathematical Society, 2009 Feb 01. 137(2), 579-584.
Externí odkaz:
https://www.jstor.org/stable/20535773
Autor:
Scheinerman, Ed, Schep, Anton R.
Publikováno v:
The American Mathematical Monthly, 2009 Jan 01. 116(1), 67-68.
Externí odkaz:
https://www.jstor.org/stable/27642665