Zobrazeno 1 - 10
of 292
pro vyhledávání: '"Schenk Andrea"'
Autor:
Kraft Valentin, Schumann Christian, Salzmann Daniela, Nopper Hans, Lück Thomas, Weyhe Dirk, Schenk Andrea
Publikováno v:
Current Directions in Biomedical Engineering, Vol 7, Iss 1, Pp 166-170 (2021)
Three-dimensional visualizations and 3D-printed organs are used increasingly for teaching, surgery planning, patient education, and interventions. Hence, pipelines for the creation of the necessary geometric data from CT or MR images on a per-patient
Externí odkaz:
https://doaj.org/article/ba63bc33506542b8a654d0431fc9a3e9
Semantic segmentation neural networks require pixel-level annotations in large quantities to achieve a good performance. In the medical domain, such annotations are expensive, because they are time-consuming and require expert knowledge. Active learn
Externí odkaz:
http://arxiv.org/abs/2109.14879
Autor:
Meyer, Anneke, Chlebus, Grzegorz, Rak, Marko, Schindele, Daniel, Schostak, Martin, van Ginneken, Bram, Schenk, Andrea, Meine, Hans, Hahn, Horst K., Schreiber, Andreas, Hansen, Christian
Background and Objective: Accurate and reliable segmentation of the prostate gland in MR images can support the clinical assessment of prostate cancer, as well as the planning and monitoring of focal and loco-regional therapeutic interventions. Despi
Externí odkaz:
http://arxiv.org/abs/2009.11120
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Homeyer André, Schenk Andrea, Ivanovska Tetyana, Deng Meihong, Dahmen Uta, Dirsch Olaf, Hahn Horst K, Linsen Lars
Publikováno v:
BMC Bioinformatics, Vol 11, Iss 1, p 124 (2010)
Abstract Background Quantification of different types of cells is often needed for analysis of histological images. In our project, we compute the relative number of proliferating hepatocytes for the evaluation of the regeneration process after parti
Externí odkaz:
https://doaj.org/article/5c9623793f4e480eb01459140816ddaa
Explainability of decisions made by deep neural networks is of high value as it allows for validation and improvement of models. This work proposes an approach to explain semantic segmentation networks by means of layer-wise relevance propagation. As
Externí odkaz:
http://arxiv.org/abs/1907.11773
Autor:
Bilic, Patrick, Christ, Patrick, Li, Hongwei Bran, Vorontsov, Eugene, Ben-Cohen, Avi, Kaissis, Georgios, Szeskin, Adi, Jacobs, Colin, Mamani, Gabriel Efrain Humpire, Chartrand, Gabriel, Lohöfer, Fabian, Holch, Julian Walter, Sommer, Wieland, Hofmann, Felix, Hostettler, Alexandre, Lev-Cohain, Naama, Drozdzal, Michal, Amitai, Michal Marianne, Vivantik, Refael, Sosna, Jacob, Ezhov, Ivan, Sekuboyina, Anjany, Navarro, Fernando, Kofler, Florian, Paetzold, Johannes C., Shit, Suprosanna, Hu, Xiaobin, Lipková, Jana, Rempfler, Markus, Piraud, Marie, Kirschke, Jan, Wiestler, Benedikt, Zhang, Zhiheng, Hülsemeyer, Christian, Beetz, Marcel, Ettlinger, Florian, Antonelli, Michela, Bae, Woong, Bellver, Míriam, Bi, Lei, Chen, Hao, Chlebus, Grzegorz, Dam, Erik B., Dou, Qi, Fu, Chi-Wing, Georgescu, Bogdan, Giró-i-Nieto, Xavier, Gruen, Felix, Han, Xu, Heng, Pheng-Ann, Hesser, Jürgen, Moltz, Jan Hendrik, Igel, Christian, Isensee, Fabian, Jäger, Paul, Jia, Fucang, Kaluva, Krishna Chaitanya, Khened, Mahendra, Kim, Ildoo, Kim, Jae-Hun, Kim, Sungwoong, Kohl, Simon, Konopczynski, Tomasz, Kori, Avinash, Krishnamurthi, Ganapathy, Li, Fan, Li, Hongchao, Li, Junbo, Li, Xiaomeng, Lowengrub, John, Ma, Jun, Maier-Hein, Klaus, Maninis, Kevis-Kokitsi, Meine, Hans, Merhof, Dorit, Pai, Akshay, Perslev, Mathias, Petersen, Jens, Pont-Tuset, Jordi, Qi, Jin, Qi, Xiaojuan, Rippel, Oliver, Roth, Karsten, Sarasua, Ignacio, Schenk, Andrea, Shen, Zengming, Torres, Jordi, Wachinger, Christian, Wang, Chunliang, Weninger, Leon, Wu, Jianrong, Xu, Daguang, Yang, Xiaoping, Yu, Simon Chun-Ho, Yuan, Yading, Yu, Miao, Zhang, Liping, Cardoso, Jorge, Bakas, Spyridon, Braren, Rickmer, Heinemann, Volker, Pal, Christopher, Tang, An, Kadoury, Samuel, Soler, Luc, van Ginneken, Bram, Greenspan, Hayit, Joskowicz, Leo, Menze, Bjoern
Publikováno v:
Medical Image Analysis (2022) Pg. 102680
In this work, we report the set-up and results of the Liver Tumor Segmentation Benchmark (LiTS), which was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI) 2017 and the International Conferences on Medical I
Externí odkaz:
http://arxiv.org/abs/1901.04056
Autor:
Bilic, Patrick, Christ, Patrick, Li, Hongwei Bran, Vorontsov, Eugene, Ben-Cohen, Avi, Kaissis, Georgios, Szeskin, Adi, Jacobs, Colin, Mamani, Gabriel Efrain Humpire, Chartrand, Gabriel, Lohöfer, Fabian, Holch, Julian Walter, Sommer, Wieland, Hofmann, Felix, Hostettler, Alexandre, Lev-Cohain, Naama, Drozdzal, Michal, Amitai, Michal Marianne, Vivanti, Refael, Sosna, Jacob, Ezhov, Ivan, Sekuboyina, Anjany, Navarro, Fernando, Kofler, Florian, Paetzold, Johannes C., Shit, Suprosanna, Hu, Xiaobin, Lipková, Jana, Rempfler, Markus, Piraud, Marie, Kirschke, Jan, Wiestler, Benedikt, Zhang, Zhiheng, Hülsemeyer, Christian, Beetz, Marcel, Ettlinger, Florian, Antonelli, Michela, Bae, Woong, Bellver, Míriam, Bi, Lei, Chen, Hao, Chlebus, Grzegorz, Dam, Erik B., Dou, Qi, Fu, Chi-Wing, Georgescu, Bogdan, Giró-i-Nieto, Xavier, Gruen, Felix, Han, Xu, Heng, Pheng-Ann, Hesser, Jürgen, Moltz, Jan Hendrik, Igel, Christian, Isensee, Fabian, Jäger, Paul, Jia, Fucang, Kaluva, Krishna Chaitanya, Khened, Mahendra, Kim, Ildoo, Kim, Jae-Hun, Kim, Sungwoong, Kohl, Simon, Konopczynski, Tomasz, Kori, Avinash, Krishnamurthi, Ganapathy, Li, Fan, Li, Hongchao, Li, Junbo, Li, Xiaomeng, Lowengrub, John, Ma, Jun, Maier-Hein, Klaus, Maninis, Kevis-Kokitsi, Meine, Hans, Merhof, Dorit, Pai, Akshay, Perslev, Mathias, Petersen, Jens, Pont-Tuset, Jordi, Qi, Jin, Qi, Xiaojuan, Rippel, Oliver, Roth, Karsten, Sarasua, Ignacio, Schenk, Andrea, Shen, Zengming, Torres, Jordi, Wachinger, Christian, Wang, Chunliang, Weninger, Leon, Wu, Jianrong, Xu, Daguang, Yang, Xiaoping, Yu, Simon Chun-Ho, Yuan, Yading, Yue, Miao, Zhang, Liping, Cardoso, Jorge, Bakas, Spyridon, Braren, Rickmer, Heinemann, Volker, Pal, Christopher, Tang, An, Kadoury, Samuel, Soler, Luc, van Ginneken, Bram, Greenspan, Hayit, Joskowicz, Leo, Menze, Bjoern
Publikováno v:
In Medical Image Analysis February 2023 84
Various approaches for liver segmentation in CT have been proposed: Besides statistical shape models, which played a major role in this research area, novel approaches on the basis of convolutional neural networks have been introduced recently. Using
Externí odkaz:
http://arxiv.org/abs/1810.04017
Neural Network-Based Automatic Liver Tumor Segmentation With Random Forest-Based Candidate Filtering
We present a fully automatic method employing convolutional neural networks based on the 2D U-net architecture and random forest classifier to solve the automatic liver lesion segmentation problem of the ISBI 2017 Liver Tumor Segmentation Challenge (
Externí odkaz:
http://arxiv.org/abs/1706.00842