Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Schapira, Barbara"'
In the context of geodesic flows of noncompact negatively curved manifolds, we propose three different definitions of entropy and pressure at infinity, through growth of periodic orbits, critical exponents of Poincar\'e series, and entropy (pressure)
Externí odkaz:
http://arxiv.org/abs/2007.08816
Autor:
Schapira, Barbara, Tapie, Samuel
We prove the equidistribution of (weighted) periodic orbits of the geodesic ow on noncompact negatively curved manifolds toward equilibrium states in the narrow topology, i.e. in the dual of bounded continuous functions. We deduce an exact asymptotic
Externí odkaz:
http://arxiv.org/abs/1907.10898
Let $\Gamma'<\Gamma$ be two discrete groups acting properly by isometries on a Gromov-hyperbolic space $X$. We prove that their critical exponents coincide if and only if $\Gamma'$ is co-amenable in $\Gamma$, under the assumption that the action of $
Externí odkaz:
http://arxiv.org/abs/1809.10881
Autor:
Schapira, Barbara, Tapie, Samuel
In this work, we introduce the notion of entropy at infinity, and define a wide class of noncompact manifolds with negative curvature, those which admit a critical gap between entropy at infinity and topological entropy. We call them strongly positiv
Externí odkaz:
http://arxiv.org/abs/1802.04991
Publikováno v:
Duke Math. J. 168, no. 4 (2019), 697-747
We study the dynamics of unipotent flows on frame bundles of hyperbolic manifolds of infinite volume. We prove that they are topologi-cally transitive, and that the natural invariant measure, the so-called " Burger-Roblin measure ", is ergodic, as so
Externí odkaz:
http://arxiv.org/abs/1702.01689
Autor:
Schapira, Barbara, Pit, Vincent
We characterize the finiteness of Gibbs measures for geodesic flows on negatively curved manifolds by several criteria, analogous to those proposed by Sarig for symbolic dynamical systems over an infinite alphabet. As an application, we recover Dal'b
Externí odkaz:
http://arxiv.org/abs/1610.03255
Autor:
Schapira, Barbara
We give a short proof of the unique ergodicity of the strong stable foliation of the geodesic flow on the frame bundle of a hyperbolic manifold admitting a finite measure of maximal entropy. Equivalently, let G = S0o(n, 1), $\Gamma$ \textless{} G be
Externí odkaz:
http://arxiv.org/abs/1505.05648
Autor:
Coudene, Yves, Schapira, Barbara
We study the generic invariant probability measures for the geodesic flow on connected complete nonpositively curved manifolds. Under a mild technical assumption, we prove that ergodicity is a generic property in the set of probability measures defin
Externí odkaz:
http://arxiv.org/abs/1401.5282
Autor:
Schapira, Barbara
Cette thèse est consacrée à l'étude des propriétés ergodiques du feuilletage horosphérique d'une variété géométriquement finie à courbure négative $M$. Un de nos principaux résultats est la classification des mesures transverses quasi-i
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00163420
http://tel.archives-ouvertes.fr/docs/00/16/34/20/PDF/schapira_barbara_these.pdf
http://tel.archives-ouvertes.fr/docs/00/16/34/20/PDF/schapira_barbara_these.pdf
Autor:
Gelfert, Katrin, Schapira, Barbara
We study the geodesic flow on the unit tangent bundle of a rank one manifold and we give conditions under which all classical definitions of pressure of a H\"older continuous potential coincide. We provide a large deviation statement, which allows to
Externí odkaz:
http://arxiv.org/abs/1310.4088