Zobrazeno 1 - 10
of 683
pro vyhledávání: '"Schanuel's conjecture"'
In this article we study an abelian analogue of Schanuel's conjecture. This conjecture falls in the realm of the generalised period conjecture of Y. Andr{\'e}. As shown by C. Bertolin, the generalised period conjecture includes Schanuel's conjecture
Externí odkaz:
http://arxiv.org/abs/1811.05167
Autor:
Kirby, Jonathan
This is a collection of variants of Schanuel's conjecture and the known dependencies between them. It was originally written in 2007, and made available for a time on my webpage. I have been asked by a few people to make it available again and have t
Externí odkaz:
http://arxiv.org/abs/1801.08765
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Eva Trojovská, Pavel Trojovský
Publikováno v:
Mathematics, Vol 9, Iss 7, p 717 (2021)
We give three consequences of Schanuel’s Conjecture. The first is that P(e)Q(e) and P(π)Q(π) are transcendental, for any non-constant polynomials P(x),Q(x)∈Q¯[x]. The second is that π≠αβ, for any algebraic numbers α and β. The third is
Externí odkaz:
https://doaj.org/article/97b1f940a9d44f56975b75079a3aedd8
Autor:
Mariaule, Nathanaël
Let exp(x) be the function determined by the classical power series of the exponentiation. Then E_p(x):=exp(px) is well-defined on Zp, the ring of p-adic integer (for p not equal to 2, we set E_2(x)=exp(4x)). Furthermore, E_p determines a structure o
Externí odkaz:
http://arxiv.org/abs/1408.0900
In this paper, using an argument of P. Erdos, K. Alniacik and E. Saias, we extend earlier results on Liouville numbers, due to P. Erdos, G.J. Rieger, W. Schwarz, K. Alniacik, E. Saias, E.B. Burger. We also produce new results of algebraic independenc
Externí odkaz:
http://arxiv.org/abs/1312.7154
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Shkop, Ahuva C.
In this paper we prove that assuming Schanuel's conjecture, an exponential polynomial in one variable over the algebraic numbers has only finitely many algebraic solutions. This implies a positive answer to Shapiro's conjecture for exponential polyno
Externí odkaz:
http://arxiv.org/abs/0910.2989
In this paper we prove Shapiro's 1958 Conjecture on exponential polynomials, assuming Schanuel's Conjecture.
Externí odkaz:
http://arxiv.org/abs/1206.6747
Autor:
Cheng, Chuangxun, Dietel, Brian, Herblot, Mathilde, Huang, Jingjing, Krieger, Holly, Marques, Diego, Mason, Jonathan, Mereb, Martin, Wilson, S. Robert
During the Arizona Winter School 2008 (held in Tucson, AZ) we worked on the following problems: a) (Expanding a remark by S. Lang). Define $E_0 = \overline{\mathbb{Q}}$ Inductively, for $n \geq 1$, define $E_n$ as the algebraic closure of the field g
Externí odkaz:
http://arxiv.org/abs/0804.3550