Zobrazeno 1 - 10
of 157
pro vyhledávání: '"Schambra, Heidi"'
Autor:
Yu, Boyang, Kaku, Aakash, Liu, Kangning, Parnandi, Avinash, Fokas, Emily, Venkatesan, Anita, Pandit, Natasha, Ranganath, Rajesh, Schambra, Heidi, Fernandez-Granda, Carlos
Automatic assessment of impairment and disease severity is a key challenge in data-driven medicine. We propose a novel framework to address this challenge, which leverages AI models trained exclusively on healthy individuals. The COnfidence-Based cha
Externí odkaz:
http://arxiv.org/abs/2311.12781
Autor:
Parnandi, Avinash, Kaku, Aakash, Venkatesan, Anita, Pandit, Natasha, Wirtanen, Audre, Rajamohan, Haresh, Venkataramanan, Kannan, Nilsen, Dawn, Fernandez-Granda, Carlos, Schambra, Heidi
Stroke rehabilitation seeks to increase neuroplasticity through the repeated practice of functional motions, but may have minimal impact on recovery because of insufficient repetitions. The optimal training content and quantity are currently unknown
Externí odkaz:
http://arxiv.org/abs/2112.11330
Autor:
Kaku, Aakash, Liu, Kangning, Parnandi, Avinash, Rajamohan, Haresh Rengaraj, Venkataramanan, Kannan, Venkatesan, Anita, Wirtanen, Audre, Pandit, Natasha, Schambra, Heidi, Fernandez-Granda, Carlos
Automatic action identification from video and kinematic data is an important machine learning problem with applications ranging from robotics to smart health. Most existing works focus on identifying coarse actions such as running, climbing, or cutt
Externí odkaz:
http://arxiv.org/abs/2111.02521
Autor:
Kaku, Aakash, Parnandi, Avinash, Venkatesan, Anita, Pandit, Natasha, Schambra, Heidi, Fernandez-Granda, Carlos
Recovery after stroke is often incomplete, but rehabilitation training may potentiate recovery by engaging endogenous neuroplasticity. In preclinical models of stroke, high doses of rehabilitation training are required to restore functional movement
Externí odkaz:
http://arxiv.org/abs/2004.08297
Extraneous variables are variables that are irrelevant for a certain task, but heavily affect the distribution of the available data. In this work, we show that the presence of such variables can degrade the performance of deep-learning models. We st
Externí odkaz:
http://arxiv.org/abs/2002.04019
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The distribution of transcallosal inhibition to upper extremity muscles is altered in chronic stroke
Autor:
Hayes, Leticia, Taga, Myriam, Charalambous, Charalambos C., Raju, Sharmila, Lin, Jing, Schambra, Heidi M.
Publikováno v:
In Journal of the Neurological Sciences 15 July 2023 450
Rehabilitation training is the primary intervention to improve motor recovery after stroke, but a tool to measure functional training does not currently exist. To bridge this gap, we previously developed an approach to classify functional movement pr
Externí odkaz:
http://arxiv.org/abs/1902.08697
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.