Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Schaller, Karin"'
We give a combinatorial proof of a lattice point identity involving a lattice polygon and its dual, generalizing the formula $area(\Delta) + area(\Delta^*) = 6$ for reflexive $\Delta$. The identity is equivalent to the stringy Libgober-Wood identity
Externí odkaz:
http://arxiv.org/abs/2309.02339
Publikováno v:
Ãpijournal de Géométrie Algébrique, Volume 8 (May 12, 2024) epiga:11407
We provide a combinatorial criterion for the finite generation of a valuation semigroup associated with an ample divisor on a smooth toric surface and a non-toric valuation of maximal rank. As an application, we construct a lattice polytope such that
Externí odkaz:
http://arxiv.org/abs/2209.06044
Autor:
Batyrev, Victor, Schaller, Karin
We consider a $d$-dimensional well-formed weighted projective space $\mathbb{P}(\overline{w})$ as a toric variety associated with a fan $\Sigma(\overline{w})$ in $N_{\overline{w}} \otimes \mathbb{N}$ whose $1$-dimensional cones are spanned by primiti
Externí odkaz:
http://arxiv.org/abs/2006.04465
Publikováno v:
"Interactions with Lattice Polytopes", Springer, 2022, pp. 11-47
The Fine interior $\Delta^{\text{FI}}$ of a $d$-dimensional lattice polytope $\Delta$ is a rational subpolytope of $\Delta$ which is important for constructing minimal birational models of non-degenerate hypersurfaces defined by Laurent polynomials w
Externí odkaz:
http://arxiv.org/abs/1911.12048
Autor:
Batyrev, Victor, Schaller, Karin
Let $\Delta$ be a $3$-dimensional lattice polytope containing exactly one interior lattice point. We give a simple combinatorial formula for computing the stringy $E$-function of the $3$-dimensional canonical toric Fano variety $X_{\Delta}$ associate
Externí odkaz:
http://arxiv.org/abs/1807.00559
Autor:
Batyrev, Victor, Schaller, Karin
Let X be a normal projective Q-Gorenstein variety with at worst log-terminal singularities. We prove a formula expressing the total stringy Chern class of a generic complete intersection in X via the total stringy Chern class of X. This formula is mo
Externí odkaz:
http://arxiv.org/abs/1607.04135
Autor:
Batyrev, Victor, Schaller, Karin
Publikováno v:
In Journal of Geometry and Physics June 2021 164
Autor:
Schaller, Karin
We present topological invariants in the singular setting for projective ℚ-Gorenstein varieties with at worst log-terminal singularities, such as stringy Euler numbers, stringy Chern classes, stringy Hodge numbers, and stringy E-functions. In the t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::432f750548f6c8ed1e14182baa843f03
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Boschmann, Michael, Adams, Frauke, Schaller, Karin, Franke, Gabriele, Sharma, Arya M, Klaus, Susanne, Luft, Friedrich C, Jordan, Jens
Publikováno v:
Journal of Hypertension; June 2006, Vol. 24 Issue: 6 p1165-1171, 7p