Zobrazeno 1 - 10
of 177
pro vyhledávání: '"Schack, R."'
Autor:
Soklakov, A. N., Schack, R.
Publikováno v:
Phys. Rev. E 61, 5108 (2000)
We derive a simple closed form for the matrix elements of the quantum baker's map that shows that the map is an approximate shift in a symbolic representation based on discrete phase space. We use this result to give a formal proof that the quantum b
Externí odkaz:
http://arxiv.org/abs/quant-ph/9908040
Publikováno v:
Proc.Roy.Soc.Lond. A456 (2000) 1175-1182
In a recent paper (quant-ph/9906015), Deutsch claims to derive the "probabilistic predictions of quantum theory" from the "non-probabilistic axioms of quantum theory" and the "non-probabilistic part of classical decision theory." We show that his der
Externí odkaz:
http://arxiv.org/abs/quant-ph/9907024
Autor:
Schack, R., Caves, C. M.
Publikováno v:
J.Mod.Opt. 47 (2000) 387-399
We present a general method for constructing pure-product-state representations for density operators of $N$ quantum bits. If such a representation has nonnegative expansion coefficients, it provides an explicit separable ensemble for the density ope
Externí odkaz:
http://arxiv.org/abs/quant-ph/9904109
Autor:
Schack, R., Caves, C. M.
Publikováno v:
Phys.Rev.A60:4354-4362,1999
We present a classical model for bulk-ensemble NMR quantum computation: the quantum state of the NMR sample is described by a probability distribution over the orientations of classical tops, and quantum gates are described by classical transition pr
Externí odkaz:
http://arxiv.org/abs/quant-ph/9903101
Publikováno v:
Phys.Rev.Lett. 83 (1999) 1054-1057
We give a constructive proof that all mixed states of N qubits in a sufficiently small neighborhood of the maximally mixed state are separable. The construction provides an explicit representation of any such state as a mixture of product states. We
Externí odkaz:
http://arxiv.org/abs/quant-ph/9811018
Autor:
Schack, R., Caves, C. M.
Publikováno v:
Appl.Algebra Engrg.Comm.Comput.10:305-310,2000
We present two complementary ways in which Saraceno's symmetric version of the quantum baker's map can be written as a shift map on a string of quantum bits. One of these representations leads naturally to a family of quantizations of the baker's map
Externí odkaz:
http://arxiv.org/abs/quant-ph/9810050
Publikováno v:
Proceedings: Mathematical, Physical and Engineering Sciences, 2000 May 01. 456(1997), 1175-1182.
Externí odkaz:
https://www.jstor.org/stable/2665486
Quantum state diffusion (QSD) as a tool to solve quantum-optical master equations by stochastic simulation can be made several orders of magnitude more efficient if states in Hilbert space are represented in a moving basis of excited coherent states.
Externí odkaz:
http://arxiv.org/abs/atom-ph/9510001
Autor:
Schack, R., Caves, C. M.
Hypersensitivity to perturbation is a criterion for chaos based on the question of how much information about a perturbing environment is needed to keep the entropy of a Hamiltonian system from increasing. We demonstrate numerically that hypersensiti
Externí odkaz:
http://arxiv.org/abs/chao-dyn/9506008
Publikováno v:
J.Phys. A28 (1995) 5401-5414
Numerical simulation of individual open quantum systems has proven advantages over density operator computations. Quantum state diffusion with a moving basis (MQSD) provides a practical numerical simulation method which takes full advantage of the lo
Externí odkaz:
http://arxiv.org/abs/quant-ph/9506039