Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Schötz, Matthias"'
Autor:
Schötz, Matthias
The following representation theorem is proven: A partially ordered commutative ring $R$ is a subring of a ring of almost everywhere defined continuous real-valued functions on a compact Hausdorff space $X$ if and only if $R$ is archimedean and local
Externí odkaz:
http://arxiv.org/abs/2406.13063
Autor:
Schmitt, Philipp, Schötz, Matthias
We prove a noncommutative real Nullstellensatz for 2-step nilpotent Lie algebras that extends the classical, commutative real Nullstellensatz as follows: Instead of the real polynomial algebra $\mathbb R[x_1, \dots, x_d]$ we consider the universal en
Externí odkaz:
http://arxiv.org/abs/2403.06773
Autor:
Schötz, Matthias
Consider a commutative monoid $(M,+,0)$ and a biadditive binary operation $\mu \colon M \times M \to M$. We will show that under some additional general assumptions, the operation $\mu$ is automatically both associative and commutative. The main addi
Externí odkaz:
http://arxiv.org/abs/2303.03627
Autor:
Schmüdgen, Konrad, Schötz, Matthias
In this paper we develop a number of results and notions concerning Positivstellens\"atze for semirings (preprimes) of commutative unital real algebras. First we reduce the Archimedean Positivstellensatz for semirings to the corresponding result for
Externí odkaz:
http://arxiv.org/abs/2207.02748
Autor:
Schötz, Matthias
Publikováno v:
In Journal of Algebra 1 December 2024 659:648-671
Autor:
Schmitt, Philipp, Schötz, Matthias
We give a non-commutative Positivstellensatz for CP^n: The (commutative) *-algebra of polynomials on the real algebraic set CP^n with the pointwise product can be realized by phase space reduction as the U(1)-invariant polynomials on C^{1+n}, restric
Externí odkaz:
http://arxiv.org/abs/2110.03437
Autor:
Schmitt, Philipp, Schötz, Matthias
We develop a general theory of symmetry reduction of states on (possibly non-commutative) *-algebras that are equipped with a Poisson bracket and a Hamiltonian action of a commutative Lie algebra $g$. The key idea advocated for in this article is tha
Externí odkaz:
http://arxiv.org/abs/2107.04900
Autor:
Schötz, Matthias
Diese Dissertation behandelt ein Problem aus der Deformationsquantisierung: Nachdem man die Quantisierung eines klassischen Systems konstruiert hat, würde man gerne ihre mathematischen Eigenschaften verstehen (sowohl die des klassischen Systems als
Autor:
Schmitt, Philipp, Schötz, Matthias
We study formal and non-formal deformation quantizations of a family of manifolds that can be obtained by phase space reduction from $\mathbb{C}^{1+n}$ with the Wick star product in arbitrary signature. Two special cases of such manifolds are the com
Externí odkaz:
http://arxiv.org/abs/1911.12118
Autor:
Schötz, Matthias
The classical Gelfand--Naimark theorems provide important insight into the structure of general and of commutative C*-algebras. It is shown that these can be generalized to certain ordered *-algebras. More precisely, for $\sigma$-bounded closed order
Externí odkaz:
http://arxiv.org/abs/1906.08752