Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Schäfer, Clemens"'
Autor:
Schiemer, Martin, Schaefer, Clemens JS, Vap, Jayden Parker, Horeni, Mark James, Wang, Yu Emma, Ye, Juan, Joshi, Siddharth
Continual learning is a desirable feature in many modern machine learning applications, which allows in-field adaptation and updating, ranging from accommodating distribution shift, to fine-tuning, and to learning new tasks. For applications with pri
Externí odkaz:
http://arxiv.org/abs/2310.03675
Autor:
Schaefer, Clemens JS, Lambert-Shirzad, Navid, Zhang, Xiaofan, Chou, Chiachen, Jablin, Tom, Li, Jian, Guo, Elfie, Stanton, Caitlin, Joshi, Siddharth, Wang, Yu Emma
Efficiently serving neural network models with low latency is becoming more challenging due to increasing model complexity and parameter count. Model quantization offers a solution which simultaneously reduces memory footprint and compute requirement
Externí odkaz:
http://arxiv.org/abs/2306.04879
Autor:
Yik, Jason, Berghe, Korneel Van den, Blanken, Douwe den, Bouhadjar, Younes, Fabre, Maxime, Hueber, Paul, Kleyko, Denis, Pacik-Nelson, Noah, Sun, Pao-Sheng Vincent, Tang, Guangzhi, Wang, Shenqi, Zhou, Biyan, Ahmed, Soikat Hasan, Joseph, George Vathakkattil, Leto, Benedetto, Micheli, Aurora, Mishra, Anurag Kumar, Lenz, Gregor, Sun, Tao, Ahmed, Zergham, Akl, Mahmoud, Anderson, Brian, Andreou, Andreas G., Bartolozzi, Chiara, Basu, Arindam, Bogdan, Petrut, Bohte, Sander, Buckley, Sonia, Cauwenberghs, Gert, Chicca, Elisabetta, Corradi, Federico, de Croon, Guido, Danielescu, Andreea, Daram, Anurag, Davies, Mike, Demirag, Yigit, Eshraghian, Jason, Fischer, Tobias, Forest, Jeremy, Fra, Vittorio, Furber, Steve, Furlong, P. Michael, Gilpin, William, Gilra, Aditya, Gonzalez, Hector A., Indiveri, Giacomo, Joshi, Siddharth, Karia, Vedant, Khacef, Lyes, Knight, James C., Kriener, Laura, Kubendran, Rajkumar, Kudithipudi, Dhireesha, Liu, Yao-Hong, Liu, Shih-Chii, Ma, Haoyuan, Manohar, Rajit, Margarit-Taulé, Josep Maria, Mayr, Christian, Michmizos, Konstantinos, Muir, Dylan, Neftci, Emre, Nowotny, Thomas, Ottati, Fabrizio, Ozcelikkale, Ayca, Panda, Priyadarshini, Park, Jongkil, Payvand, Melika, Pehle, Christian, Petrovici, Mihai A., Pierro, Alessandro, Posch, Christoph, Renner, Alpha, Sandamirskaya, Yulia, Schaefer, Clemens JS, van Schaik, André, Schemmel, Johannes, Schmidgall, Samuel, Schuman, Catherine, Seo, Jae-sun, Sheik, Sadique, Shrestha, Sumit Bam, Sifalakis, Manolis, Sironi, Amos, Stewart, Matthew, Stewart, Kenneth, Stewart, Terrence C., Stratmann, Philipp, Timcheck, Jonathan, Tömen, Nergis, Urgese, Gianvito, Verhelst, Marian, Vineyard, Craig M., Vogginger, Bernhard, Yousefzadeh, Amirreza, Zohora, Fatima Tuz, Frenkel, Charlotte, Reddi, Vijay Janapa
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accu
Externí odkaz:
http://arxiv.org/abs/2304.04640
Energy efficient implementations and deployments of Spiking neural networks (SNNs) have been of great interest due to the possibility of developing artificial systems that can achieve the computational powers and energy efficiency of the biological b
Externí odkaz:
http://arxiv.org/abs/2302.04174
Autor:
Schaefer, Clemens JS, Guo, Elfie, Stanton, Caitlin, Zhang, Xiaofan, Jablin, Tom, Lambert-Shirzad, Navid, Li, Jian, Chou, Chiachen, Joshi, Siddharth, Wang, Yu Emma
Serving large-scale machine learning (ML) models efficiently and with low latency has become challenging owing to increasing model size and complexity. Quantizing models can simultaneously reduce memory and compute requirements, facilitating their wi
Externí odkaz:
http://arxiv.org/abs/2302.01382
When building information systems that can be accessed through desktop and mobile devices, developers often face the same basic design decisions that depend on a number of still unstructured criteria. Going through the whole decision-making process f
Externí odkaz:
https://ul.qucosa.de/id/qucosa%3A32294
https://ul.qucosa.de/api/qucosa%3A32294/attachment/ATT-0/
https://ul.qucosa.de/api/qucosa%3A32294/attachment/ATT-0/
The large computing and memory cost of deep neural networks (DNNs) often precludes their use in resource-constrained devices. Quantizing the parameters and operations to lower bit-precision offers substantial memory and energy savings for neural netw
Externí odkaz:
http://arxiv.org/abs/2206.07741
Autor:
Schäfer, Clemens
The emerging behavior of a mobile system is determined by its software architecture (structure, dynamics, deployment), the underlying communication networks (topology, properties like bandwidth etc.) and interactions undertaken by the users of the sy
Externí odkaz:
https://ul.qucosa.de/id/qucosa%3A31960
https://ul.qucosa.de/api/qucosa%3A31960/attachment/ATT-0/
https://ul.qucosa.de/api/qucosa%3A31960/attachment/ATT-0/
Autor:
Gruhn, Volker, Schäfer, Clemens
Das Verhalten eines mobilen Systems wird bestimmt durch seine Architektur (statische und dynamische Anteile, Softwareverteilung), die zu Grunde liegende Netzwerkinfrastruktur (Topologie, Parameter wie Bandbreiten oder Latenzzeiten) und Interaktionen
Externí odkaz:
https://ul.qucosa.de/id/qucosa%3A32884
https://ul.qucosa.de/api/qucosa%3A32884/attachment/ATT-0/
https://ul.qucosa.de/api/qucosa%3A32884/attachment/ATT-0/
Bei der Entwicklung von mobilen Informationssystemen stehen die Entwickler oft vor immer wiederkehrenden Entwurfsentscheidungen, die von einer Anzahl noch unstrukturierter Kriterien abhängen. Den kompletten Entscheidungsprozess für jedes einzelne P
Externí odkaz:
https://ul.qucosa.de/id/qucosa%3A32300
https://ul.qucosa.de/api/qucosa%3A32300/attachment/ATT-0/
https://ul.qucosa.de/api/qucosa%3A32300/attachment/ATT-0/