Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Scarbrough, Kyle"'
Autor:
Scarbrough, Kyle
The representation of the resolvent as an integral operator, the $m$ function, and the associated spectral representation are fundamental topics in the spectral theory of self-adjoint ordinary differential operators. Versions of these are developed h
Externí odkaz:
http://arxiv.org/abs/2112.09558
Autor:
Remling, Christian, Scarbrough, Kyle
We study the minimum of the essential spectrum of canonical systems $Ju'=-zHu$. Our results can be described as a generalized and more quantitative version of the characterization of systems with purely discrete spectrum, which was recently obtained
Externí odkaz:
http://arxiv.org/abs/1908.02266
Autor:
Remling, Christian, Scarbrough, Kyle
Oscillation theory locates the spectrum of a differential equation by counting the zeros of its solutions. We present a version of this theory for canonical systems $Ju'=-zHu$ and then use it to discuss semibounded operators from this point of view.
Externí odkaz:
http://arxiv.org/abs/1811.07067
Autor:
Remling, Christian, Scarbrough, Kyle
Publikováno v:
In Journal of Approximation Theory June 2020 254
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.