Zobrazeno 1 - 10
of 117
pro vyhledávání: '"Sayag, Eitan"'
We show that the results of [BM97, DeB02b, Oka, Lus85, AA07, Tay16] imply a positive answer to the question of Moeglin-Waldspurger on wave-front sets in the case of depth zero cuspidal representations. Namely, we deduce that for large enough residue
Externí odkaz:
http://arxiv.org/abs/2205.14695
We prove the following result in relative representation theory of a reductive p-adic group $G$: Let $U$ be the unipotent radical of a minimal parabolic subgroup of $G$, and let $\psi$ be an arbitrary smooth character of $U$. Let $S \subset Irr(G)$ b
Externí odkaz:
http://arxiv.org/abs/2202.04984
Autor:
Kuit, Job J., Sayag, Eitan
In this article we give a precise description of the Plancherel decomposition of the most continuous part of $L^{2}(Z)$ for a real spherical homogeneous space $Z$. Our starting point is the recent construction of Bernstein morphisms by Delorme, Knop,
Externí odkaz:
http://arxiv.org/abs/2202.02119
Autor:
Kuit, Job J., Sayag, Eitan
In the present paper we further the study of the compression cone of a real spherical homogeneous space $Z=G/H$. In particular we provide a geometric construction of the little Weyl group of $Z$ introduced recently by Knop and Kr\"otz. Our technique
Externí odkaz:
http://arxiv.org/abs/2006.03516
Autor:
Gourevitch, Dmitry, Sayag, Eitan
Let $G$ be a reductive group over a local field $F$ of characteristic zero, Archimedean or not. Let $X$ be a $G$-space. In this paper we study the existence of generalized Whittaker quotients for the space of Schwartz functions on $X$, considered as
Externí odkaz:
http://arxiv.org/abs/2001.11750
Autor:
Gourevitch, Dmitry, Sayag, Eitan
Publikováno v:
Forum of Mathematics, Sigma 9 (2021) e52
We provide a micro-local necessary condition for distinction of admissible representations of real reductive groups in the context of spherical pairs. Let $\bf G$ be a complex algebraic reductive group, and $\bf H\subset G$ be a spherical algebraic s
Externí odkaz:
http://arxiv.org/abs/2001.11746
Autor:
Mitra, Arnab, Sayag, Eitan
In this article we explore the interplay between two generalizations of the Whittaker model, namely the Klyachko models and the degenerate Whittaker models, and two functorial constructions, namely base change and automorphic induction, for the class
Externí odkaz:
http://arxiv.org/abs/1808.04910
Autor:
Aizenbud, Avraham, Sayag, Eitan
We study homological multiplicities of spherical varieties of reductive group $G$ over a $p$-adic field $F$. Based on Bernstein's decomposition of the category of smooth representations of a $p$-adic group, we introduce a sheaf that measures these mu
Externí odkaz:
http://arxiv.org/abs/1709.09886
Autor:
Aizenbud, Avraham, Sayag, Eitan
Let $E/F$ be an unramified extension of non-archimedean local fields of residual characteristic different than $2$. We provide a simple geometric proof of a variation of a result of Y. Hironaka. Namely we prove that the module $\mathcal{S}(X)^{K_0}$
Externí odkaz:
http://arxiv.org/abs/1709.08214
Publikováno v:
Acta Math. Sinica 34(3) (2018), 488-531
We provide $L^p$-versus $L^\infty$-bounds for eigenfunctions on a real spherical space $Z$ of wavefront type. It is shown that these bounds imply a non-trivial error term estimate for lattice counting on $Z$. The paper also serves as an introduction
Externí odkaz:
http://arxiv.org/abs/1703.10947