Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Savitha Ramasamy"'
Autor:
Ma'sum, Muhammad Anwar, Pratama, Mahardhika, Savitha, Ramasamy, Liu, Lin, Habibullah, Kowalczyk, Ryszard
A continual learning (CL) model is desired for remote sensing image analysis because of varying camera parameters, spectral ranges, resolutions, etc. There exist some recent initiatives to develop CL techniques in this domain but they still depend on
Externí odkaz:
http://arxiv.org/abs/2406.18574
Autor:
Weng, Weiwei, Pratama, Mahardhika, Zhang, Jie, Chen, Chen, Yee, Edward Yapp Kien, Savitha, Ramasamy
Artificial neural networks, celebrated for their human-like cognitive learning abilities, often encounter the well-known catastrophic forgetting (CF) problem, where the neural networks lose the proficiency in previously acquired knowledge. Despite nu
Externí odkaz:
http://arxiv.org/abs/2405.07142
Autor:
Qiao, Zhongzheng, Pham, Quang, Cao, Zhen, Le, Hoang H, Suganthan, P. N., Jiang, Xudong, Savitha, Ramasamy
Real-world environments are inherently non-stationary, frequently introducing new classes over time. This is especially common in time series classification, such as the emergence of new disease classification in healthcare or the addition of new act
Externí odkaz:
http://arxiv.org/abs/2402.12035
This work proposes a comprehensively progressive Bayesian neural network for robust continual learning of a sequence of tasks. A Bayesian neural network is progressively pruned and grown such that there are sufficient network resources to represent a
Externí odkaz:
http://arxiv.org/abs/2202.13369
Autor:
Oviedo, Felipe, Ren, Zekun, Sun, Shijing, Settens, Charlie, Liu, Zhe, Hartono, Noor Titan Putri, Savitha, Ramasamy, DeCost, Brian L., Tian, Siyu I. P., Romano, Giuseppe, Kusne, Aaron Gilad, Buonassisi, Tonio
X-ray diffraction (XRD) data acquisition and analysis is among the most time-consuming steps in the development cycle of novel thin-film materials. We propose a machine-learning-enabled approach to predict crystallographic dimensionality and space gr
Externí odkaz:
http://arxiv.org/abs/1811.08425
Autor:
Zeng, Minggang, Kumar, Jatin Nitin, Zeng, Zeng, Savitha, Ramasamy, Chandrasekhar, Vijay Ramaseshan, Hippalgaonkar, Kedar
A fast and accurate predictive tool for polymer properties is demanding and will pave the way to iterative inverse design. In this work, we apply graph convolutional neural networks (GCNN) to predict the dielectric constant and energy bandgap of poly
Externí odkaz:
http://arxiv.org/abs/1811.06231
Publikováno v:
In Applied Soft Computing Journal July 2020 92
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mahsa Paknezhad, Hamsawardhini Rengarajan, Chenghao Yuan, Sujanya Suresh, Manas Gupta, Savitha Ramasamy, Hwee Kuan Lee
Publikováno v:
Neural Networks. 161:449-465
Publikováno v:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).