Zobrazeno 1 - 10
of 169
pro vyhledávání: '"Savchuk, A. M."'
Autor:
Savchuk, Dmytro M., Sidki, Said N.
We introduce a class of automorphisms of rooted $d$-regular trees arising from affine actions on their boundaries viewed as infinite dimensional vector spaces. This class includes, in particular, many examples of self-similar realizations of lampligh
Externí odkaz:
http://arxiv.org/abs/1510.08434
Publikováno v:
Scientific Bulletin of National Mining University; 2024, Issue 5, p123-129, 7p
Autor:
Savchuk, A. M.1 (AUTHOR) savchuk@cosmos.msu.ru, Sadovnichaya, I. V.1 (AUTHOR) ivsad@yandex.ru
Publikováno v:
Doklady Mathematics. Dec2023, Vol. 108 Issue 3, p490-492. 3p.
Autor:
Savchuk, A. M., Shkalikov, A. A.
Let (E_0,E_1) and (H_0,H_1) be a pair of Banach spaces with dense and continuous embeddings E_1 into E_0, H_1 into H_0. For $\theta \in [0,1]$ denote by $B_\theta(0,R)$ the ball of radius R centered at zero in the interpolation spaces E_\theta. Assum
Externí odkaz:
http://arxiv.org/abs/1307.0623
Autor:
Savchuk, A. M., Shkalikov, A. A.
The paper deals with two inverse problems for Sturm--Liouville operator $Ly=-y" +q(x)y$ on the finite interval $[0,\pi]$. The first one is the problem of recovering of a potential by two spectra. We associate with this problem the map $F:\, W^\theta_
Externí odkaz:
http://arxiv.org/abs/1010.5916
Autor:
Savchuk, A. M., Shkalikov, A. A.
Denote by $L_D$ the Sturm-Liouville operator $Ly=-y" +q(x)y$ on the finite interval $[0,\pi]$ with Dirichlet boundary conditions $y(0)=y(\pi)=0$. Let $\{\lambda_k\}_1^\infty$ and $\{\alpha_k\}_1^\infty$ be the sequences of the eigenvalues and norming
Externí odkaz:
http://arxiv.org/abs/1010.5344
Autor:
Prikhna, T. A., Gawalek, W., Savchuk, Ya. M., Sergienko, N. V., Moshchil, V. E., Sokolovsky, V., Vajda, J., Tkach, V. N., Karau, F., Weber, H., Eisterer, M., Juolain, A., Rabier, J., Chaud, X., Wendt, M., Dellith, J., Danilenko, N. I., Habisreuther, T., Dub, S. N., Meerovich, V., Litzkendorf, D., Nagorny, P. A., Kovalev, L. K., Schmidt, Ch., Melnikov, V. S., Shapovalov, A. P., Kozyrev, A. V., Sverdun, V. B., Kosa, J., Vlasenko, A. V.
Materials of the Y-Ba-Cu-O (melt-textured YBa2Cu3O7-d-based materials or MT-YBCO) and Mg-B-O (MgB2-based materials) systems with high superconducting performance, which can be attained due to the formation of regularly distributed nanostructural defe
Externí odkaz:
http://arxiv.org/abs/0912.4899
Autor:
Prikhna, T. A., Gawalek, W., Tkach, V. M., Danilenko, N. I., Savchuk, Ya M., Dub, S. N., Moshchil, V. E., Kozyrev, A. V., Sergienko, N. V., Wendt, M., Melnikov, V. S., Dellith, J., Weber, H, Eisterer, M, Schmidt, Ch, Habisreuther, T, Litzkendorf, D, Vajda, J, Shapovalov, A. P., Sokolovsky, V., Nagorny, P. A., Sverdun, V. B., Kosa, J., Karau, F., Starostina, A. V.
The effect of doping with Ti, Ta, SiC in complex with synthesis temperature on the amount and distribution of structural inhomogeneities in MgB2 matrix of high-pressuresynthesized-materials (2 GPa) which can influence pining: higher borides (MgB12) a
Externí odkaz:
http://arxiv.org/abs/0912.4889
Autor:
Halenova, Tetiana I., Raksha, Nataliia H., Vovk, Tetiana B., Karbovskyy, Vitalii L., Sholomon, Svitlana M., Melnyk, Volodymyr S., Savchuk, Olexii M.
Publikováno v:
Wiadomości Lekarskie; Apr2024, Vol. 77 Issue 4, p640-645, 6p
Publikováno v:
Family Medicine. European Practices / Sìmejna Medicina. Êvropejs'kì Praktiki; 2024, Issue 2, p13-20, 8p