Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Satoshi Tonegawa"'
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-9 (2022)
Abstract Lignin is a heterogeneous aromatic polymer and major component of plant cell walls. The β-O-4 alkyl aryl ether is the most abundant linkage within lignin. Given that lignin is effectively degraded on earth, as yet unknown ether bond–cleav
Externí odkaz:
https://doaj.org/article/6801aba5e295441495fcd0f79eb9842e
Publikováno v:
Electronic Journal of Differential Equations, Vol 2004, Iss 62, Pp 1-16 (2004)
We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant
Externí odkaz:
https://doaj.org/article/58162e64039e4c429f72c2fe10bcec24
Publikováno v:
Journal of Bioscience and Bioengineering. 135:474-479
Publikováno v:
Scientific reports. 12(1)
Lignin is a heterogeneous aromatic polymer and major component of plant cell walls. The β-O-4 alkyl aryl ether is the most abundant linkage within lignin. Given that lignin is effectively degraded on earth, as yet unknown ether bond–cleaving micro
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 63:655-673
We continue to study the existence of the wave operators for the nonlinear Klein–Gordon equation with quadratic nonlinearity in two space dimensions \({\left(\partial_{t}^{2}-\Delta+m^{2}\right) u=\lambda u^{2},\left( t,x\right) \in\mathbf{R}\times
Publikováno v:
Communications in Contemporary Mathematics. :983-996
In this paper, we study the asymptotic behavior of solutions to the cubic and the quadratic nonlinear Schrödinger equations in one and two space dimensions, respectively. When the nonlinearity is of a form f = |u|p-1u, it is known that there exist s
Autor:
Satoshi Tonegawa, Akihiro Shimomura
Publikováno v:
J. Math. Kyoto Univ. 45, no. 1 (2005), 205-216
In this paper, the global existence and asymptotic behavior in time of solutions for the nonlinear Schrödinger equation with the Stark effect in one or two space dimensions are studied. The nonlinearity is cubic and quadratic in one and two dimensio
Autor:
Satoshi Tonegawa
Publikováno v:
Hokkaido Math. J. 30, no. 2 (2001), 451-473
In this paper, we prove the global existence of a small solution to the Cauchy problem for the nonlinear Schrödinger equation with a class of cubic nonlinearities in one space dimension. Moreover, we also consider the asymptotic behavior in large ti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d6a9ba7f384dad1746b09a68fa249b7
https://projecteuclid.org/euclid.hokmj/1350911962
https://projecteuclid.org/euclid.hokmj/1350911962