Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Satire Detection"'
Autor:
Md Saifullah Razali, Alfian Abdul Halin, Yang-Wai Chow, Noris Mohd Norowi, Shyamala Doraisamy
Publikováno v:
IEEE Access, Vol 10, Pp 78780-78787 (2022)
This work discuss the task of automatically detecting satire instances in short articles. It is the study of extracting the most optimal features by using a deep learning architecture combined with carefully handcrafted contextual features. It is fou
Externí odkaz:
https://doaj.org/article/b2852af49d754e99b9999c51d4a4ecb1
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Pyae Phyo Thu, Than Nwe Aung
Publikováno v:
International Journal of Networked and Distributed Computing (IJNDC), Vol 6, Iss 2 (2018)
Recognition of satirical language in social multimedia outlets turns out to be a trending research area in computational linguistics. Many researchers have analyzed satirical language from the various point of views: lexically, syntactically, and sem
Externí odkaz:
https://doaj.org/article/9a5b2c7799c9412a86b7e8d13498fc90
Autor:
Mansur Alp Tocoglu, Aytuğ Onan
Publikováno v:
Volume: 28, Issue: 2 1086-1106
Turkish Journal of Electrical Engineering and Computer Science
Turkish Journal of Electrical Engineering and Computer Science
Social media and microblogging platforms generally contain elements of figurative and nonliteral language, including satire. The identification of figurative language is a fundamental task for sentiment analysis. It will not be possible to obtain sen
Autor:
Giosuè Lo Bosco, Daniele Schicchi, Gabriella Casalino, Alfredo Cuzzocrea, Mariano Maiorana, Giovanni Pilato
Publikováno v:
Flexible Query Answering Systems ISBN: 9783030869663
FQAS
FQAS
Satire is a way of criticizing people (or ideas) by ridiculing them on political, social, and morals topics often used to denounce political and societal problems, leveraging comedic devices such as parody exaggeration, incongruity, etc.etera. Detect
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5da40f6912e4a66eb9f59ddcf5558a8b
https://doi.org/10.1007/978-3-030-86967-0_13
https://doi.org/10.1007/978-3-030-86967-0_13
Publikováno v:
DMSVIVA 2021: 27th International DMS Conference on Visualization and Visual Languages, pp. 92–96, Virtual, Pittsburgh, 29 June 2021-30 June 2021
info:cnr-pdr/source/autori:Cuzzocrea A.; Bosco G.L.; Maiorana M.; Pilato G.; Schicchi D./congresso_nome:DMSVIVA 2021: 27th International DMS Conference on Visualization and Visual Languages/congresso_luogo:Virtual, Pittsburgh/congresso_data:29 June 2021-30 June 2021/anno:2021/pagina_da:92/pagina_a:96/intervallo_pagine:92–96
info:cnr-pdr/source/autori:Cuzzocrea A.; Bosco G.L.; Maiorana M.; Pilato G.; Schicchi D./congresso_nome:DMSVIVA 2021: 27th International DMS Conference on Visualization and Visual Languages/congresso_luogo:Virtual, Pittsburgh/congresso_data:29 June 2021-30 June 2021/anno:2021/pagina_da:92/pagina_a:96/intervallo_pagine:92–96
This paper describes an approach for supporting automatic satire detection through effective deep learning (DL) architecture that has been shown to be useful for addressing sarcasm/irony detection problems. We both trained and tested the system explo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c9b0c0f55d1c1270d95fda7fe4b0b5f0
http://www.cnr.it/prodotto/i/458858
http://www.cnr.it/prodotto/i/458858
This paper describes an approach for supporting automatic satire detection through effective deep learning (DL) architecture that has been shown to be useful for addressing sarcasm/irony detection problems. We both trained and tested the system explo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a006dd8bd1ec0b42f0006fb7fa5975b
http://hdl.handle.net/10447/519388
http://hdl.handle.net/10447/519388
Publikováno v:
The International Joint Conference on Neural Network, IJCNN 2021
The International Joint Conference on Neural Network, IJCNN 2021, Jul 2021, Virtual Event, United States
IJCNN
The International Joint Conference on Neural Network, IJCNN 2021, Jul 2021, Virtual Event, United States
IJCNN
In this paper, we introduce FreSaDa, a French Satire Data Set, which is composed of 11,570 articles from the news domain. In order to avoid reporting unreasonably high accuracy rates due to the learning of characteristics specific to publication sour
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b4d9a836451bcee80fe39ffeb7f78eaa
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.