Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Sasha Sodin"'
Autor:
Davide Macera, Sasha Sodin
In 1990, Klein, Lacroix, and Speis proved (spectral) Anderson localisation for the Anderson model on the strip of width $W \geqslant 1$, allowing for singular distribution of the potential. Their proof employs multi-scale analysis, in addition to arg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56a62553daa1165dc2852af4ff59e64f
Autor:
Ilya Goldsheid, Sasha Sodin
It is known that the eigenfunctions of a random Schr\"odinger operator on a strip decay exponentially, and that the rate of decay is not slower than prescribed by the slowest Lyapunov exponent. A variery of heuristic arguments suggest that no eigenfu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d70ce997eec342f5d42646f8860d5920
http://arxiv.org/abs/2012.03017
http://arxiv.org/abs/2012.03017
Publikováno v:
Israel Journal of Mathematics
Consider an equation of the form $f(x)=g(x^k)$, where $k>1$ and $f(x)$ is a function in a given Carleman class of smooth functions. For each $k$, we construct a Carleman-type class which contains all the smooth solutions $g(x)$ to such equations. We
Autor:
Sasha Sodin
Publikováno v:
Constructive Approximation
We recall a uniqueness theorem of E. B. Vul pertaining to a version of the cosine transform originating in spectral theory. Then we point out an application to the Bernstein approximation problem with non-symmetric weights: a theorem of Volberg is pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8ddec842539dc84009734e5b7da1f8ed
http://arxiv.org/abs/1903.01749
http://arxiv.org/abs/1903.01749
Autor:
Yuri Kifer, Sasha Sodin
Publikováno v:
Electron. Commun. Probab.
The proof of Theorem 2.3 in our paper [3] is fully justified only under the additional assumption $q_i(n)=a_in+b_i,\, i=1,...,\ell $.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a707cb0d904359724f366b61ca038fd1
https://projecteuclid.org/euclid.ecp/1549530018
https://projecteuclid.org/euclid.ecp/1549530018
Autor:
Sasha Sodin
Publikováno v:
Zurnal matematiceskoj fiziki, analiza, geometrii
A space of analytic functions in the unit disc with uniformly continuous derivatives is said to be quasianalytic if the boundary value of a non-zero function from the class can not have a zero of infinite multiplicity. Such classes were described in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0a53d13c465f84f3de15c07abc96639f
Recently, T. and M. Shcherbina proved a pointwise semicircle law for the density of states of one-dimensional Gaussian band matrices of large bandwidth. The main step of their proof is a new method to study the spectral properties of non-self-adjoint
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c6b9107636a398c0288d7f03fc35e1eb
http://arxiv.org/abs/1810.13150
http://arxiv.org/abs/1810.13150
Autor:
Ilya Goldsheid, Sasha Sodin
Publikováno v:
Ann. Appl. Probab. 28, no. 5 (2018), 3075-3093
The Annals of Applied Probability
The Annals of Applied Probability
The eigenvalues of the Hatano--Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This compl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::219d0ce9eb109e5fe2036fd086c3d2b6
https://projecteuclid.org/euclid.aoap/1535443242
https://projecteuclid.org/euclid.aoap/1535443242
Autor:
Margherita Disertori, Sasha Sodin
Publikováno v:
Annales Henri Poincaré
We propose a way to study one-dimensional statistical mechanics models with complex-valued action using transfer operators. The argument consists of two steps. First, the contour of integration is deformed so that the associated transfer operator is
Autor:
Sasha Sodin, Yuri Kifer
Publikováno v:
Electronic Communications in Probability
Electron. Commun. Probab.
Electron. Commun. Probab.
Let $\xi _1,\xi _2,...$ be independent identically distributed random variables and $F:{\mathbb R}^\ell \to SL_d({\mathbb R})$ be a Borel measurable matrix-valued function. Set $X_n=F(\xi _{q_1(n)},\xi _{q_2(n)},...,\xi _{q_\ell (n)})$ where $0\leq q