Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Sascha Welten"'
Autor:
Sascha Welten, Marius de Arruda Botelho Herr, Lars Hempel, David Hieber, Peter Placzek, Michael Graf, Sven Weber, Laurenz Neumann, Maximilian Jugl, Liam Tirpitz, Karl Kindermann, Sandra Geisler, Luiz Olavo Bonino da Silva Santos, Stefan Decker, Nico Pfeifer, Oliver Kohlbacher, Toralf Kirsten
Publikováno v:
Scientific Data, Vol 11, Iss 1, Pp 1-20 (2024)
Abstract The development of platforms for distributed analytics has been driven by a growing need to comply with various governance-related or legal constraints. Among these platforms, the so-called Personal Health Train (PHT) is one representative t
Externí odkaz:
https://doaj.org/article/5861b66e1eea4459b1e4fe60691e9c6f
Autor:
Sascha Welten, Adrian Holt, Julian Hofmann, Sven Weber, Elena-Maria Klopries, Holger Schüttrumpf, Stefan Decker
Publikováno v:
Journal of Hydroinformatics, Vol 26, Iss 2, Pp 534-548 (2024)
Increasing extreme weather events pose significant challenges in hydrology, requiring tools for preparedness and prediction of intense rainfall impacts, especially flash floods. Current risk reduction measures for pluvial flood risk management rely o
Externí odkaz:
https://doaj.org/article/40636a844b5b4a66bfbfac062dc24a21
Publikováno v:
Frontiers in Medicine, Vol 10 (2024)
The growing interest in data-driven medicine, in conjunction with the formation of initiatives such as the European Health Data Space (EHDS) has demonstrated the need for methodologies that are capable of facilitating privacy-preserving data analysis
Externí odkaz:
https://doaj.org/article/e69743c2ac854999955a72a4ed9de6a4
Autor:
Sascha Welten, Lars Hempel, Masoud Abedi, Yongli Mou, Mehrshad Jaberansary, Laurenz Neumann, Sven Weber, Kais Tahar, Yeliz Ucer Yediel, Matthias Löbe, Stefan Decker, Oya Beyan, Toralf Kirsten
Publikováno v:
Applied Sciences, Vol 12, Iss 9, p 4336 (2022)
The constant upward movement of data-driven medicine as a valuable option to enhance daily clinical practice has brought new challenges for data analysts to get access to valuable but sensitive data due to privacy considerations. One solution for mos
Externí odkaz:
https://doaj.org/article/ed7d50c2bf124c148e39aedfa4fcee84
Autor:
Sascha Welten, Adrian Holt, Julian Hofmann, Lennart Schelter, Elena-Maria Klopries, Thomas Wintgens, Stefan Decker
Publikováno v:
Journal of Hydrology. 612:128210
Autor:
Yongli, Mou, Sascha, Welten, Mehrshad, Jaberansary, Yeliz, Ucer Yediel, Toralf, Kirsten, Stefan, Decker, Oya, Beyan
Publikováno v:
Studies in health technology and informatics. 281
Skin cancer has become the most common cancer type. Research has applied image processing and analysis tools to support and improve the diagnose process. Conventional procedures usually centralise data from various data sources to a single location a
Autor:
Yongli Mou, Oya Beyan, Sascha Welten, Stefan Decker, Mehrshad Jaberansary, Toralf Kirsten, Yeliz Ucer Yediel
Publikováno v:
MIE
Skin cancer has become the most common cancer type. Research has applied image processing and analysis tools to support and improve the diagnose process. Conventional procedures usually centralise data from various data sources to a single location a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9bf4f01d73179f4ab8541c563d4a1dfd
https://doi.org/10.3233/shti210179
https://doi.org/10.3233/shti210179
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030937355
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4b6cd5031cbbf72aba373e21e8d1ebaf
https://doi.org/10.1007/978-3-030-93736-2_13
https://doi.org/10.1007/978-3-030-93736-2_13
Autor:
Yeliz Ucer Yediel, Luiz Olavo Bonino da Silva Santos, Sascha Welten, Oya Beyan, Stefan Decker, Laurenz Neumann
Publikováno v:
Data Intelligence 3, 1-17 (2021). doi:10.1162/dint_a_00100
Data Intelligence 3, 1-17 (2021). doi:10.1162/dint_a_00100
Published by MIT Press, Cambridge, MA
Published by MIT Press, Cambridge, MA
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::041f077d5df16d58257c36594398cae7