Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Sarkar, Rohit Sarma"'
In this paper, we design quantum circuits for the exponential of scaled $n$-qubit Pauli strings using single-qubit rotation gates, Hadamard gate, and CNOT gates. A key result we derive is that any two Pauli-string operators composed of identity and $
Externí odkaz:
http://arxiv.org/abs/2405.13605
Autor:
Sarkar, Rohit Sarma, Adhikari, Bibhas
In this paper, we develop a Lie group theoretic approach for parametric representation of unitary matrices. This leads to develop a quantum neural network framework for quantum circuit approximation of multi-qubit unitary gates. Layers of the neural
Externí odkaz:
http://arxiv.org/abs/2405.00012
Autor:
Sarkar, Rohit Sarma, Adhikari, Bibhas
We develop qutrit circuit models for discrete-time three-state quantum walks on Cayley graphs corresponding to Dihedral groups $D_N$ and the additive groups of integers modulo any positive integer $N$. The proposed circuits comprise of elementary qut
Externí odkaz:
http://arxiv.org/abs/2401.11023
Autor:
Sarkar, Rohit Sarma, Adhikari, Bibhas
In this paper we study discrete-time quantum walks on Cayley graphs corresponding to Dihedral groups, which are graphs with both directed and undirected edges. We consider the walks with coins that are one-parameter continuous deformation of the Grov
Externí odkaz:
http://arxiv.org/abs/2309.15194
Autor:
Sarkar, Rohit Sarma, Adhikari, Bibhas
This work presents an optimization-based scalable quantum neural network framework for approximating $n$-qubit unitaries through generic parametric representation of unitaries, which are obtained as product of exponential of basis elements of a new b
Externí odkaz:
http://arxiv.org/abs/2304.14096
In this article, we undertake a detailed study of the limiting behavior of a three-state discrete-time quantum walk on one dimensional lattice with generalized Grover coins. Two limit theorems are proved and consequently we show that the quantum walk
Externí odkaz:
http://arxiv.org/abs/2204.05625
Localization phenomena of quantum walks makes the propagation dynamics of a walker strikingly different from that corresponding to classical random walks. In this paper, we study the localization phenomena of four-state discrete-time quantum walks on
Externí odkaz:
http://arxiv.org/abs/2103.00515
In this paper we extend the study of three state lively quantum walks on cycles by considering the coin operator as a linear sum of permutation matrices, which is a generalization of the Grover matrix. First we provide a complete characterization of
Externí odkaz:
http://arxiv.org/abs/2003.12955
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.