Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Sarika Goyal"'
Autor:
Anu Rani, Sarika Goyal
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2023, Iss 2, Pp 1-36 (2023)
In this article, we investigate the multiplicity results of the following biharmonic Choquard system involving critical nonlinearities with sign-changing weight function: \begin{align*} \begin{cases} \Delta^{2}u = \lambda F(x) |u|^{r-2}u+ H(x)\left(
Externí odkaz:
https://doaj.org/article/84bd9ec6c8a94e59839d08a15f16f4b9
Autor:
Sarika Goyal, Tarun Sharma
Publikováno v:
Electronic Journal of Differential Equations, Vol 2022, Iss 25,, Pp 1-29 (2022)
Externí odkaz:
https://doaj.org/article/4d2508bf756a4241af8d7bdd89e252a0
Autor:
Anu Rani, Sarika Goyal
Publikováno v:
Electronic Journal of Differential Equations, Vol 2020, Iss 119,, Pp 1-25 (2020)
This article concerns the existence of multiple solutions of the polyharmonic system involving critical nonlinearities with sign-changing weight functions $$\displaylines{ (-\Delta)^mu = \lambda f(x) |u|^{r-2}u+ \frac{\beta}{\beta+\gamma} h(x) |
Externí odkaz:
https://doaj.org/article/e8b931f7fc2b43268c77d0ec5a43352a
Publikováno v:
Electronic Journal of Differential Equations, Vol 2018, Iss 74,, Pp 1-21 (2018)
In this article, we study the Fucik spectrum of the p-fractional Laplace operator with nonlocal normal derivative conditions which is defined as the set of all $(a,b)\in\mathbb{R}^2$ such that $$\displaylines{ \Lambda_{n,p}(1-\alpha)(-\Delta)_{p}
Externí odkaz:
https://doaj.org/article/d17a472f53084235894ea350572edee1
Autor:
Sarika Goyal
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 183,, Pp 1-28 (2017)
In this article, we study the following fractional-Laplacian system with singular nonlinearity $$\displaylines{ (-\Delta)^s u = \lambda f(x) u^{-q} + \frac{\alpha}{\alpha+\beta}b(x) u^{\alpha-1} w^\beta\quad \text{in }\Omega \cr (-\Delta)^s w =
Externí odkaz:
https://doaj.org/article/69703a22d7b847308af5c8cfe82e1d23
Autor:
Sarika Goyal, Konijeti Sreenadh
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 145,, Pp 1-23 (2016)
In this article, we study the fractional Laplacian equation with singular nonlinearity $$\displaylines{ (-\Delta)^s u = a(x) u^{-q}+ \lambda b(x) u^p\quad \text{in }\Omega, \cr \quad u>0\quad \text{in }\Omega, \quad u = 0 \quad \text{in } \partia
Externí odkaz:
https://doaj.org/article/5d8ed5f131d2457893b70c81fca3b00d
Autor:
Sarika Goyal, Konijeti Sreenadh
Publikováno v:
Electronic Journal of Differential Equations, Vol 2014, Iss 15,, Pp 1-22 (2014)
In this article, we study the existence and multiplicity of non-negative solutions of the $N$-Laplacian equation $$\displaylines{ -\Delta_N u+V(x)|u|^{N-2}u = \lambda h(x)|u|^{q-1}u+ u|u|^{p} e^{|u|^{\beta}} \quad \text{in }\Omega \cr u \geq 0 \
Externí odkaz:
https://doaj.org/article/ea422d6c8dbd42749cf4632e382036f1
Autor:
null Anu Rani, null Sarika Goyal
Publikováno v:
Topological Methods in Nonlinear Analysis. :1-40
Autor:
Sarika Goyal
Publikováno v:
Mathematische Nachrichten. 292:2189-2202
Autor:
Sarika Goyal
Publikováno v:
Applicable Analysis. 99:2892-2916
We study the following fractional equation with Hardy potential and singular nonlinearity ( P μ , λ ) ( − Δ ) s w − μ w | x | 2 s = a ( x ) w − q + λ b ( x ) w r in Ω w > 0 in Ω , w = 0 in R n ∖ Ω ...