Zobrazeno 1 - 10
of 99
pro vyhledávání: '"Sard's theorem"'
Publikováno v:
Frontiers in Applied Mathematics and Statistics, Vol 6 (2020)
Neural networks (NN) provide state-of-the-art performance in many problem domains. They can accommodate a vast number of parameters and still perform well when classic machine learning techniques provided with the same number of parameters would tend
Externí odkaz:
https://doaj.org/article/46eeeb8fd961480c80f213de1e9df08b
Autor:
Spingarn, J. E., Rockafellar, R. T.
Publikováno v:
Mathematics of Operations Research, 1979 Nov 01. 4(4), 425-430.
Externí odkaz:
https://www.jstor.org/stable/3689227
Autor:
Jonker, Leo
Publikováno v:
Transactions of the American Mathematical Society, 1972 Jul 01. 169, 461-474.
Externí odkaz:
https://www.jstor.org/stable/1996253
Autor:
A. D. Ioffe
Publikováno v:
Journal of the Australian Mathematical Society. 101:376-417
Metric regularity theory lies in the very heart of variational analysis, a relatively new discipline whose appearance was, to a large extent, determined by the needs of modern optimization theory in which such phenomena as nondifferentiability and se
Autor:
Andrew McLennan
Publikováno v:
Advanced Fixed Point Theory for Economics ISBN: 9789811307096
A subset S of a metric space has \(\alpha \)-dimensional Hausdorff measure zero if, for any \(\varepsilon > 0\), there is a countable covering of S by balls of radii \(r_i\) such that \(\displaystyle \Sigma_i r_i^\alpha \max \{m - n, 0\}\), and C is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::92e6829571d9f1aa6b6c29fe632324ef
https://doi.org/10.1007/978-981-13-0710-2_11
https://doi.org/10.1007/978-981-13-0710-2_11
We prove the following dichotomy: if $n=2,3$ and $f\in C^1(\mathbb{S}^{n+1},\mathbb{S}^n)$ is not homotopic to a constant map, then there is an open set $\Omega \subset \mathbb{S}^{n+1}$ such that $\operatorname{rank} df=n$ on $\Omega $ and $f(\Omega
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d0f9b9ed53e945b2fccd8d5576a5e36
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Israël Journal of Mathematics
Israël Journal of Mathematics, Hebrew University Magnes Press, 2016, 212 (2), pp.757-790. ⟨10.1007/s11856-016-1308-7⟩
Israel Journal of Mathematics
Israel Journal of Mathematics, 2016, 212 (2), pp.757-790. ⟨10.1007/s11856-016-1308-7⟩
Israël Journal of Mathematics, Hebrew University Magnes Press, 2016, 212 (2), pp.757-790. ⟨10.1007/s11856-016-1308-7⟩
Israel Journal of Mathematics
Israel Journal of Mathematics, 2016, 212 (2), pp.757-790. ⟨10.1007/s11856-016-1308-7⟩
We establish a “preparatory Sard theorem” for smooth functions with a partially affine structure. By means of this result, we improve a previous result of Rifford [17, 19] concerning the generalized (Clarke) critical values of Lipschitz functions
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb938384e26eceae80d48ae25bfe1dbd
https://hal.archives-ouvertes.fr/hal-01336328/file/BDDR_FINAL.pdf
https://hal.archives-ouvertes.fr/hal-01336328/file/BDDR_FINAL.pdf
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Roberto van der Putten
Publikováno v:
Bulletin des Sciences Mathématiques. 136:477-483
We give a simpler and more self-contained proof of the Morse–Sard theorem in the setting of Sobolev space W n , n ( R n , R ) with n ⩾ 2 , we already proved in a previous paper [R. van der Putten, The Morse–Sard theorem for Sobolev spaces in a