Zobrazeno 1 - 10
of 3 562
pro vyhledávání: '"Sard's theorem"'
Autor:
Ferrera, Juan
In this note we define a $C^1$ function $F:[0,M]^2\to [0,2]$ that satisfies that its set of critical values has positive measure. This function provides an example, easier than those that usually appear in the literature, of how the order of differen
Externí odkaz:
http://arxiv.org/abs/2202.08000
We prove the following dichotomy: if $n=2,3$ and $f\in C^1(\mathbb{S}^{n+1},\mathbb{S}^n)$ is not homotopic to a constant map, then there is an open set $\Omega\subset\mathbb{S}^{n+1}$ such that $\mathrm{rank}\, df=n$ on $\Omega$ and $f(\Omega)$ is d
Externí odkaz:
http://arxiv.org/abs/1804.07658
Autor:
Eftekharinasab, Kaveh
Publikováno v:
Ukrainian mathematical Journal, vol 64, no 12, pp. 1634-- 1641 (2010)
In this paper we prove an infinite-dimensional version of Sard's theorem for Fr\'{e}chet manifolds. Let $ M $ and $ N $ be bounded Fr\'{e}chet manifolds such that the topologies of their model Fr\'{e}chet spaces are defined by metrics with absolutely
Externí odkaz:
http://arxiv.org/abs/1004.4900
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Bates, S. M.
Publikováno v:
Proceedings of the American Mathematical Society, 1993 Jan 01. 117(1), 279-283.
Externí odkaz:
https://www.jstor.org/stable/2159728
Autor:
Smale, S.
Publikováno v:
American Journal of Mathematics, 1965 Oct 01. 87(4), 861-866.
Externí odkaz:
https://www.jstor.org/stable/2373250
Autor:
Eftekharinasab, K.1
Publikováno v:
Ukrainian Mathematical Journal. May2011, Vol. 62 Issue 12, p1896-1905. 10p.
Autor:
Andrew McLennan
Publikováno v:
Advanced Fixed Point Theory for Economics ISBN: 9789811307096
A subset S of a metric space has \(\alpha \)-dimensional Hausdorff measure zero if, for any \(\varepsilon > 0\), there is a countable covering of S by balls of radii \(r_i\) such that \(\displaystyle \Sigma_i r_i^\alpha \max \{m - n, 0\}\), and C is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::92e6829571d9f1aa6b6c29fe632324ef
https://doi.org/10.1007/978-981-13-0710-2_11
https://doi.org/10.1007/978-981-13-0710-2_11
We prove the following dichotomy: if $n=2,3$ and $f\in C^1(\mathbb{S}^{n+1},\mathbb{S}^n)$ is not homotopic to a constant map, then there is an open set $\Omega \subset \mathbb{S}^{n+1}$ such that $\operatorname{rank} df=n$ on $\Omega $ and $f(\Omega
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8d0f9b9ed53e945b2fccd8d5576a5e36
Autor:
Rocha, André Gadelha
Publikováno v:
Repositório Institucional da Universidade Federal do Ceará (UFC)
Universidade Federal do Ceará (UFC)
instacron:UFC
Universidade Federal do Ceará (UFC)
instacron:UFC
The aim of this work is to study a Lipschitz version of Sard’s Theorem. In relation to the Sard Theorem in its classic version, we will change the hypothesis of being C1 for subanalytic and locally Lipschitz. Since we are not necessarily working wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::e5756c76a64344fcd635fb5994ed7897
http://www.repositorio.ufc.br/handle/riufc/63315
http://www.repositorio.ufc.br/handle/riufc/63315