Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Sarah Scherotzke"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 11 (2023)
We show that relative Calabi–Yau structures on noncommutative moment maps give rise to (quasi-)bisymplectic structures, as introduced by Crawley-Boevey–Etingof–Ginzburg (in the additive case) and Van den Bergh (in the multiplicative case). We p
Externí odkaz:
https://doaj.org/article/4304e74ec6dd44038070084c99893be6
Publikováno v:
Hoyois, M, Safronov, P, Scherotzke, S & Sibilla, N 2021, ' The categorified Grothendieck-Riemann-Roch theorem ', Compositio Mathematica, vol. 157, no. 1, pp. 154-214 . https://doi.org/10.1112/S0010437X20007642
Compositio Mathematica
Compositio Mathematica
In this paper we prove a categorification of the Grothendieck-Riemann-Roch theorem. Our result implies in particular a Grothendieck-Riemann-Roch theorem for To\"en and Vezzosi's secondary Chern character. As a main application, we establish a compari
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57c32f66081c7120f218282fd89bf72b
http://hdl.handle.net/20.500.11767/128270
http://hdl.handle.net/20.500.11767/128270
We introduce preordered semi-orthogonal decompositions (psod-s) of dg-categories. We show that homotopy limits of dg-categories equipped with compatible psod-s carry a natural psod. This gives a way to glue semi-orthogonal decompositions along faithf
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0f1e5ec3e651fdd352b5905428b179e9
http://orbilu.uni.lu/handle/10993/45668
http://orbilu.uni.lu/handle/10993/45668
Autor:
Sarah Scherotzke
Publikováno v:
Algebras and Representation Theory. 20:231-243
In this paper, we show that generalized Nakajima Categories provide a framework to construct a desingularization of quiver Grassmannians for self-injective algebras of finite representation type. Furthermore, we show that all standard Frobenius model
Autor:
Sarah Scherotzke
Publikováno v:
Colloquium Mathematicum. :1-20
We construct semi-orthogonal decompositions on triangulated categories of parabolic sheaves on certain kinds of logarithmic schemes. This provides a categorification of the decomposition theorems in Kummer flat K-theory due to Hagihara and Nizio{\l}.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::76333a718baac7f5360960fe9afdb0d2
Publikováno v:
Compositio Mathematica
We globalize the derived version of the McKay correspondence of Bridgeland-King-Reid, proven by Kawamata in the case of abelian quotient singularities, to certain log algebraic stacks with locally free log structure. The two sides of the corresponden
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a017ff1fd0bb19ba06a056a14018381
http://orbilu.uni.lu/handle/10993/51961
http://orbilu.uni.lu/handle/10993/51961
Autor:
Sarah Scherotzke, Nicolò Sibilla
Publikováno v:
Selecta Mathematica
The coherent-constructible (CC) correspondence is a relationship between coherent sheaves on a toric variety X and constructible sheaves on a real torus $$\mathbb {T}$$ . This was discovered by Bondal and established in the equivariant setting by Fan
Publikováno v:
Geom. Topol. 21, no. 5 (2017), 3093-3158
For a log scheme locally of finite type over $\mathbb{C}$, a natural candidate for its profinite homotopy type is the profinite completion of its Kato-Nakayama space. Alternatively, one may consider the profinite homotopy type of the underlying topol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::874aabfc246a801ca679d433c76a009a
http://hdl.handle.net/20.500.11767/117709
http://hdl.handle.net/20.500.11767/117709
We propose a categorification of the Chern character that refines earlier work of To\"en and Vezzosi and of Ganter and Kapranov. If X is an algebraic stack, our categorified Chern character is a symmetric monoidal functor from a category of mixed non
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d3fee566adefd5569cea5c2567a8bf0d
http://orbilu.uni.lu/handle/10993/51963
http://orbilu.uni.lu/handle/10993/51963