Zobrazeno 1 - 10
of 160
pro vyhledávání: '"Santos, M. A. F."'
We consider random walkers searching for a target in a bounded one-dimensional heterogeneous environment, in the interval $[0,L]$, where diffusion is described by a space-dependent diffusion coefficient $D(x)$. Boundary conditions are absorbing at th
Externí odkaz:
http://arxiv.org/abs/2311.00818
The time-evolution operator obtained from the fractional-time Schr\"{o}dinger equation (FTSE) is said to be non-unitary since it does not preserve the norm of the vector state in time. As done in the time-dependent non-Hermitian quantum formalism, fo
Externí odkaz:
http://arxiv.org/abs/2208.13858
Publikováno v:
Phys. Rev. E 106, 044113 (2022)
We address the problem of random search for a target in an environment with space-dependent diffusion coefficient $D(x)$. From a general form of the diffusion differential operator that includes It\^o, Stratonovich, and H\"anggi-Klimontovich interpre
Externí odkaz:
http://arxiv.org/abs/2206.14229
Anomalous diffusion phenomenon is an intriguing process that tracer diffusion presents in numerous complex systems. Current experimental and theoretical investigations have reported the emergence of random diffusivity scenarios accompanied by the het
Externí odkaz:
http://arxiv.org/abs/2206.07820
The standard diffusive spreading, characterized by a Gaussian distribution with mean square displacement that grows linearly with time, can break down, for instance, under the presence of correlations and heterogeneity. In this work, we consider the
Externí odkaz:
http://arxiv.org/abs/2106.10525
Publikováno v:
Phys. Rev. E 102, 042139 (2020)
Population survival depends on a large set of factors that includes environment structure. Due to landscape heterogeneity, species can occupy particular regions that provide the ideal scenario for development, working as a refuge from harmful environ
Externí odkaz:
http://arxiv.org/abs/2008.02907
In this work we show how the concept of majorization in continuous distributions can be employed to characterize chaotic, diffusive and quantum dynamics. The key point lies in that majorization allows to define an intuitive arrow of time, within a co
Externí odkaz:
http://arxiv.org/abs/1811.11617
Fractional diffusion equations imply non-Gaussian distributions that generalise the standard diffusive process. Recent advances in fractional calculus lead to a class of new fractional operators defined by non-singular memory kernels, differently fro
Externí odkaz:
http://arxiv.org/abs/1806.02761
Publikováno v:
British Poultry Science; Dec2024, Vol. 65 Issue 6, p722-729, 8p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.