Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Sanjib Sabhapandit"'
Publikováno v:
Journal of Statistical Mechanics: Theory and Experiment. 2023:039901
Active particles self-propel themselves with a stochastically evolving velocity, generating a persistent motion leading to a non-diffusive behavior of the position distribution. Nevertheless, an effective diffusive behavior emerges at times much larg
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::964b55dc7744f7f81c0d9943b6c1bb7d
http://arxiv.org/abs/2202.12117
http://arxiv.org/abs/2202.12117
We compute exactly the mean number of records $\langle R_N \rangle$ for a time-series of size $N$ whose entries represent the positions of a discrete time random walker on the line. At each time step, the walker jumps by a length $\eta$ drawn indepen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aef9e2ab15801093cf06bb17a65ba4d2
http://arxiv.org/abs/2110.01539
http://arxiv.org/abs/2110.01539
Publikováno v:
Journal of Physics A: Mathematical and Theoretical. 55:414002
We study the dynamics of a Brownian motion with a diffusion coefficient which evolves stochastically. We first study this process in arbitrary dimensions and find the scaling form and the corresponding scaling function of the position distribution. W
Active Brownian motion with intermittent direction reversals is common in bacteria like Myxococcus xanthus and Pseudomonas putida. We show that, for such a motion in two dimensions, the presence of the two timescales set by the rotational diffusion c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9a647020f709280911d413f472f9c585
Autor:
Sanjib Sabhapandit, Satya N. Majumdar
Publikováno v:
Physical Review Letters
Physical Review Letters, American Physical Society, 2020, 125 (20), ⟨10.1103/PhysRevLett.125.200601⟩
Physical Review Letters, American Physical Society, 2020, 125 (20), ⟨10.1103/PhysRevLett.125.200601⟩
We study the decay rate $\theta(a)$ that characterizes the late time exponential decay of the first-passage probability density $F_a(t|0) \sim e^{-\theta(a)\, t}$ of a diffusing particle in a one dimensional confining potential $U(x)$, starting from
We investigate the run and tumble particle (RTP), also known as persistent Brownian motion, in one dimension. A telegraphic noise $\sigma(t)$ drives the particle which changes between $\pm 1$ values with some rates. Denoting the rate of flip from $1$
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::23fe04d4a89a9c2d7c786354f3966fb7
http://arxiv.org/abs/2004.11041
http://arxiv.org/abs/2004.11041
We study a set of Run-and-tumble particle (RTP) dynamics in two spatial dimensions. In the first case of the orientation {\theta} of the particle can assume a set of n possible discrete values while in the second case {\theta} is a continuous variabl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8fc26298a67d770a3c3cf68da6346c9c
Publikováno v:
Journal of Physics A: Mathematical and General
Journal of Physics A: Mathematical and General, IOP Publishing, 2020, ⟨10.10083⟩
Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2020, 53 (9), ⟨10.1088/1751-8121/ab6af0⟩
Journal of Physics A: Mathematical and General, IOP Publishing, 2020, ⟨10.10083⟩
Journal of Physics A: Mathematical and Theoretical
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2020, 53 (9), ⟨10.1088/1751-8121/ab6af0⟩
We study the motion of a one-dimensional run-and-tumble particle with three discrete internal states in the presence of a harmonic trap of stiffness $\mu.$ The three internal states, corresponding to positive, negative and zero velocities respectivel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::abb0da68afc315755bcadd1eb477bc96
https://hal.archives-ouvertes.fr/hal-02512239
https://hal.archives-ouvertes.fr/hal-02512239
Publikováno v:
Soft Matter. 18:7452-7452
Correction for ‘Direction reversing active Brownian particle in a harmonic potential’ by Ion Santra et al., Soft Matter, 2021, 17, 10108–10119, https://doi.org/10.1039/D1SM01118A.