Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Sang, Hejian"'
Autor:
Sang, Hejian, Kim, Jae Kwang
Item nonresponse is frequently encountered in practice. Ignoring missing data can lose efficiency and lead to misleading inference. Fractional imputation is a frequentist approach of imputation for handling missing data. However, the parametric fract
Externí odkaz:
http://arxiv.org/abs/1809.05976
Autor:
Sang, Hejian, Morikawa, Kosuke
Statistical inference with nonresponse is quite challenging, especially when the response mechanism is nonignorable. The existing methods often require correct model specifications for both outcome and response models. However, due to nonresponse, bo
Externí odkaz:
http://arxiv.org/abs/1809.03645
Nonresponse weighting adjustment using propensity score is a popular method for handling unit nonresponse. However, including all available auxiliary variables into the propensity model can lead to inefficient and inconsistent estimation, especially
Externí odkaz:
http://arxiv.org/abs/1807.10873
Autor:
Sang, Hejian, Liu, Jia
In this paper, we propose a new adaptive stochastic gradient Langevin dynamics (ASGLD) algorithmic framework and its two specialized versions, namely adaptive stochastic gradient (ASG) and adaptive gradient Langevin dynamics(AGLD), for non-convex opt
Externí odkaz:
http://arxiv.org/abs/1805.09416
Autor:
Sang, Hejian, Kim, Jae Kwang
Nonresponse weighting adjustment using the response propensity score is a popular tool for handling unit nonresponse. Statistical inference after the nonresponse weighting adjustment is complicated because the effect of estimating the propensity mode
Externí odkaz:
http://arxiv.org/abs/1702.03453
Autor:
Sang, Hejian1 (AUTHOR), Kwang Kim, Jae2 (AUTHOR) jkim@iastate.edu
Publikováno v:
Canadian Journal of Statistics. Sep2021, Vol. 49 Issue 3, p793-807. 15p.
Publikováno v:
Journal of the American Statistical Association. Jun2022, Vol. 117 Issue 538, p654-663. 10p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Official Statistics (JOS). Sep2018, Vol. 34 Issue 3, p795-796. 2p.