Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Sandy Moens"'
Autor:
Stefan Naulaerts, Sandy Moens, Kristof Engelen, Wim Vanden Berghe, Bart Goethals, Kris Laukens, Pieter Meysman
Publikováno v:
Bioinformatics and Biology Insights, Vol 2016, Iss 10, Pp 37-47 (2016)
Externí odkaz:
https://doaj.org/article/475cdd5174d345b4bbcec16f88ce44a2
Publikováno v:
International Journal of Data Science and Analytics, 14(3), 243-259. Springer International Publishing
International journal of data science and analytics
International journal of data science and analytics
Subspace clustering aims to discover clusters in projections of highly dimensional numerical data. In this paper, we focus on discovering small collections of highly interesting subspace clusters that do not try to cluster all data points, leaving no
Publikováno v:
RecSys
Proceedings of the 13th ACM Conference on Recommender Systems (RecSys '19), September 16-20, 2019, Copenhagen, Denmark
Proceedings of the 13th ACM Conference on Recommender Systems (RecSys '19), September 16-20, 2019, Copenhagen, Denmark
Recommender systems are typically evaluated using either offline methods, online methods, or through user studies. In this paper we take an episode mining approach to analysing recommender system data and we demonstrate how we can use SNIPER, a tool
Publikováno v:
Discovery Science ISBN: 9783030337773
DS
Discovery science : 22nd International Conference, DS 2019, Split, Croatia, October 28–30, 2019: proceedings
Lecture notes in computer science ; 11828
DS
Discovery science : 22nd International Conference, DS 2019, Split, Croatia, October 28–30, 2019: proceedings
Lecture notes in computer science ; 11828
Subspace clustering aims to discover clusters in projections of highly dimensional numerical data. In this paper, we focus on discovering small collections of interesting subspace clusters that do not try to cluster all data points, leaving noisy dat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cfa763ae48e329da82963d9dd17af1ea
https://doi.org/10.1007/978-3-030-33778-0_6
https://doi.org/10.1007/978-3-030-33778-0_6
Publikováno v:
Discovery Science ISBN: 9783319118116
Discovery Science
Discovery Science
Known pattern discovery algorithms for finding tilings (covers of 0/1-databases consisting of 1-rectangles) cannot be integrated in instant and interactive KD tools, because they do not satisfy at least one of two key requirements: a) to provide resu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::66b7a148e8d224931d7fcbe73b1691d0
https://doi.org/10.1007/978-3-319-11812-3_19
https://doi.org/10.1007/978-3-319-11812-3_19
Publikováno v:
Proceedings of the 23rd Belgian-Dutch Conference on Machine Learning (BENELEARN 2014), 2014
University of Antwerp
University of Antwerp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::da54a46bcbe685e76677c6e825305eaa
https://hdl.handle.net/10067/1231960151162165141
https://hdl.handle.net/10067/1231960151162165141
Autor:
Mario Boley, Sandy Moens
Publikováno v:
Advances in Intelligent Data Analysis XIII ISBN: 9783319125701
IDA
IDA
When plugged into instant interactive data analytics processes, pattern mining algorithms are required to produce small collections of high quality patterns in short amounts of time. In the case of Exceptional Model Mining (EMM), even heuristic appro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::eb40b40fca21562a040f97d21f596944
https://doi.org/10.1007/978-3-319-12571-8_18
https://doi.org/10.1007/978-3-319-12571-8_18
Publikováno v:
BigData Conference
IEEE Big Data 2013 : International Conference on Big Data, October 6-9, 2013, Santa Clara, Calif., USA
IEEE Big Data 2013 : International Conference on Big Data, October 6-9, 2013, Santa Clara, Calif., USA
Frequent Itemset Mining (FIM) is one of the most well known techniques to extract knowledge from data. The combinatorial explosion of FIM methods become even more problematic when they are applied to Big Data. Fortunately, recent improvements in the
Autor:
Bart Goethals, Sandy Moens
Publikováno v:
KDD 2013 Workshop on Interactive Data Exploration and Analytics (IDEA), August 11, Chicago, Ill., USA
IDEA@KDD
IDEA@KDD
Pattern mining techniques generally enumerate lots of uninteresting and redundant patterns. To obtain less redundant collections, techniques exist that give condensed representations of these collections. However, the proposed techniques often rely o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f1fe78f4b3c4b36f4ff3d3cbf18d174
https://hdl.handle.net/10067/1153340151162165141
https://hdl.handle.net/10067/1153340151162165141
Publikováno v:
KDD
KDD '12 Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
KDD '12 Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
This paper shows how coupling from the past (CFTP) can be used to avoid time and memory bottlenecks in direct local pattern sampling procedures. Such procedures draw controlled amounts of suitably biased samples directly from the pattern space of a g