Zobrazeno 1 - 10
of 61
pro vyhledávání: '"Sandu, A I"'
Publikováno v:
IOP Conference Series: Materials Science & Engineering; 2024, Vol. 1311 Issue 1, p1-8, 8p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sandu, N. I.
This paper proves that the variety generated by a centrally nilpotent Moufang loop (or centrally nilpotent A-loop) is finitely based.
Comment: 26 pages
Comment: 26 pages
Externí odkaz:
http://arxiv.org/abs/1405.7148
Autor:
Sandu, N. I.
This paper is a natural continuation of paper "On rectifiable spaces and its algebraical equivalents, topological algebraic systems and Mal'cev algebras" published in arxiv:1309.4572. Thus we justify the need to present the entire material in an unif
Externí odkaz:
http://arxiv.org/abs/1312.3285
Autor:
Sandu, N. I
We investigate the rectifiable spaces, the Mal'cev algebras, the almost quasivarieties of topological algebraic systems and their free systems and others. It specifies and corrects the roughest mistakes, incorrect statements and nonsense of the intro
Externí odkaz:
http://arxiv.org/abs/1309.4572
Autor:
Sandu, N. I.
The paper defines the notion of alternative loop algebra F[Q] for any nonassociative Moufang loop Q as being any non-zero homomorphic image of the loop algebra FQ of a loop Q over a field F. For the class M of all nonassociative alternative loop alge
Externí odkaz:
http://arxiv.org/abs/1206.0996
Autor:
Sandu, N. I.
Publikováno v:
Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2003, 3(43), pp. 25-40
The structure of the commutative Moufang loops (CML) with minimum condition for subloops is examined. In particular it is proved that such a CML $Q$ is a finite extension of a direct product of a finite number of the quasicyclic groups, lying in the
Externí odkaz:
http://arxiv.org/abs/0804.3956
Autor:
Sandu, N. I.
Let $C(F)$ be a matrix Cayley-Dickson algebra over field $F$. By $M_0(F)$ we denote the loop containing of all elements of algebra $C(F)$ with norm 1. It is shown in this paper that with precision till isomorphism the loops $M_0(F)/<-1>$ they and onl
Externí odkaz:
http://arxiv.org/abs/0804.2048
Autor:
Sandu, N. I.
It is known that with precision till isomorphism that only and only loops $M(F) = M_0(F)/<-1>$, where $M_0(F)$ denotes the loop, consisting from elements of all matrix Cayley-Dickson algebra $C(F)$ with norm 1, and $F$ be a subfield of arbitrary fixe
Externí odkaz:
http://arxiv.org/abs/0804.2049
Publikováno v:
In Composites Part B March 2014 59:109-122