Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Sandra Silvia Roblero-Aguilar"'
Autor:
Joaquín Pérez-Ortega, Carlos Fernando Moreno-Calderón, Sandra Silvia Roblero-Aguilar, Nelva Nely Almanza-Ortega, Juan Frausto-Solís, Rodolfo Pazos-Rangel, Alicia Martínez-Rebollar
Publikováno v:
Axioms, Vol 13, Iss 9, p 592 (2024)
Fuzzy C-Means is a clustering algorithm widely used in many applications. However, its computational complexity is very large, which prevents its use for large problem instances. Therefore, a hybrid improvement is proposed for the algorithm, which co
Externí odkaz:
https://doaj.org/article/383e3fb86ead48eea6734626c357d926
Autor:
Joaquín Pérez-Ortega, Carlos Fernando Moreno-Calderón, Sandra Silvia Roblero-Aguilar, Nelva Nely Almanza-Ortega, Juan Frausto-Solís, Rodolfo Pazos-Rangel, José María Rodríguez-Lelis
Publikováno v:
Axioms, Vol 13, Iss 1, p 35 (2024)
One of the most used algorithms to solve the fuzzy clustering problem is Fuzzy C-Means; however, one of its main limitations is its high computational complexity. It is known that the efficiency of an algorithm depends, among other factors, on the st
Externí odkaz:
https://doaj.org/article/5e5a230dd06948829d18bd483487c356
Autor:
Joaquín Pérez-Ortega, César David Rey-Figueroa, Sandra Silvia Roblero-Aguilar, Nelva Nely Almanza-Ortega, Crispín Zavala-Díaz, Salomón García-Paredes, Vanesa Landero-Nájera
Publikováno v:
Mathematics, Vol 11, Iss 8, p 1920 (2023)
Clustering algorithms have proven to be a useful tool to extract knowledge and support decision making by processing large volumes of data. Hard and fuzzy clustering algorithms have been used successfully to identify patterns and trends in many areas
Externí odkaz:
https://doaj.org/article/a4e5b5d93484475daea2f9dcff580e22
Autor:
Joaquín Pérez-Ortega, Sandra Silvia Roblero-Aguilar, Nelva Nely Almanza-Ortega, Juan Frausto Solís, Crispín Zavala-Díaz, Yasmín Hernández, Vanesa Landero-Nájera
Publikováno v:
Axioms, Vol 11, Iss 8, p 377 (2022)
A hybrid variant of the Fuzzy C-Means and K-Means algorithms is proposed to solve large datasets such as those presented in Big Data. The Fuzzy C-Means algorithm is sensitive to the initial values of the membership matrix. Therefore, a special config
Externí odkaz:
https://doaj.org/article/3922bfc531e54bb8879f85ca238ae154
Autor:
Mariana Bárcenas Castañeda, Luis Enrique Calatayud Velázquez, Sandra Silvia Roblero Aguilar, José Solís Romero, Víctor Augusto Castellanos Escamilla
Publikováno v:
Expert Systems with Applications. 214:119104
Autor:
Alicia Guadalupe Lazcano Herrera, Héctor Rafael Orozco Aguirre, Jose Solis Romero, Víctor Augusto Castellanos Escamilla, Sandra Silvia Roblero Aguilar
Publikováno v:
Research in Computing Science. 147:285-298
Autor:
Sandra Silvia Roblero Aguilar, Alvaro de Reza Estrada, Héctor Rafael Orozco Aguirre, Saturnino Job Morales Escobar
Publikováno v:
Research in Computing Science. 135:41-54
Modelo de inferencia difuso para clasificacion de estilos de aprendizaje con base en el Test de Honey-Alonso
Publikováno v:
Research in Computing Science. 111:177-190