Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Sanders, Beren"'
Autor:
Balmer, Paul, Sanders, Beren
Let $\hat{R}$ be the $I$-adic completion of a commutative ring $R$ with respect to a finitely generated ideal $I$. We give a necessary and sufficient criterion for the category of perfect complexes over $\hat{R}$ to be equivalent to the subcategory o
Externí odkaz:
http://arxiv.org/abs/2411.14761
We prove a thick subcategory theorem for the category of $d$-excisive functors from finite spectra to spectra. This generalizes the Hopkins-Smith thick subcategory theorem (the $d=1$ case) and the $C_2$-equivariant thick subcategory theorem (the $d=2
Externí odkaz:
http://arxiv.org/abs/2402.04244
We prove that a jointly conservative family of geometric functors between rigidly-compactly generated tensor triangulated categories induces a surjective map on Balmer spectra. From this we deduce a fiberwise criterion for Balmer's comparison map to
Externí odkaz:
http://arxiv.org/abs/2305.05604
We investigate to what extent we can descend the classification of localizing, smashing and thick ideals in a presentably symmetric monoidal stable $\infty$-category $\mathscr{C}$ along a descendable commutative algebra $A$. We establish equalizer di
Externí odkaz:
http://arxiv.org/abs/2305.02308
We develop a theory of cosupport and costratification in tensor triangular geometry. We study the geometric relationship between support and cosupport, provide a conceptual foundation for cosupport as categorically dual to support, and discover surpr
Externí odkaz:
http://arxiv.org/abs/2303.13480
We compare the homological support and tensor triangular support for `big' objects in a rigidly-compactly generated tensor triangulated category. We prove that the comparison map from the homological spectrum to the tensor triangular spectrum is a bi
Externí odkaz:
http://arxiv.org/abs/2106.16011
Publikováno v:
Cambridge Journal of Mathematics 11(4):829-915, 2023
We systematically develop a theory of stratification in the context of tensor triangular geometry and apply it to classify the localizing tensor-ideals of certain categories of spectral $G$-Mackey functors for all finite groups $G$. Our theory of str
Externí odkaz:
http://arxiv.org/abs/2106.15540
Autor:
Sanders, Beren
Publikováno v:
Ãpijournal de Géométrie Algébrique, Volume 6 (October 21, 2022) epiga:7641
We provide a characterization of finite \'etale morphisms in tensor triangular geometry. They are precisely those functors which have a conservative right adjoint, satisfy Grothendieck--Neeman duality, and for which the relative dualizing object is t
Externí odkaz:
http://arxiv.org/abs/2106.14066
Publikováno v:
Trans. Amer. Math. Soc. 375 (2022) 4057-4105
We compute the spectrum of the category of derived Mackey functors (in the sense of Kaledin) for all finite groups. We find that this space captures precisely the top and bottom layers (i.e. the height infinity and height zero parts) of the spectrum
Externí odkaz:
http://arxiv.org/abs/2008.02368
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.