Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Sandeep, R. B."'
In 1994, Erd\H{o}s and Gy\'arf\'as conjectured that every graph with minimum degree at least 3 has a cycle of length a power of 2. In 2022, Gao and Shan (Graphs and Combinatorics) proved that the conjecture is true for $P_8$-free graphs, i.e., graphs
Externí odkaz:
http://arxiv.org/abs/2410.22842
A monitoring edge-geodetic set of a graph is a subset $M$ of its vertices such that for every edge $e$ in the graph, deleting $e$ increases the distance between at least one pair of vertices in $M$. We study the following computational problem \texts
Externí odkaz:
http://arxiv.org/abs/2409.19067
Autor:
Foucaud, Florent, Marcille, Pierre-Marie, Myint, Zin Mar, Sandeep, R. B., Sen, Sagnik, Taruni, S.
A monitoring edge-geodetic set, or simply an MEG-set, of a graph $G$ is a vertex subset $M \subseteq V(G)$ such that given any edge $e$ of $G$, $e$ lies on every shortest $u$-$v$ path of $G$, for some $u,v \in M$. The monitoring edge-geodetic number
Externí odkaz:
http://arxiv.org/abs/2403.09122
In a graph, the switching operation reverses adjacencies between a subset of vertices and the others. For a hereditary graph class $\mathcal{G}$, we are concerned with the maximum subclass and the minimum superclass of $\mathcal{G}$ that are closed u
Externí odkaz:
http://arxiv.org/abs/2403.04263
For a class $\mathcal{G}$ of graphs, the objective of \textsc{Subgraph Complementation to} $\mathcal{G}$ is to find whether there exists a subset $S$ of vertices of the input graph $G$ such that modifying $G$ by complementing the subgraph induced by
Externí odkaz:
http://arxiv.org/abs/2303.15873
Autor:
Chakraborty, Dipayan, Sandeep, R. B.
Given a graph G and an integer k, the objective of the $\Pi$-Contraction problem is to check whether there exists at most k edges in G such that contracting them in G results in a graph satisfying the property $\Pi$. We investigate the problem where
Externí odkaz:
http://arxiv.org/abs/2302.13605
For a graph property $\Pi$, Subgraph Complementation to $\Pi$ is the problem to find whether there is a subset $S$ of vertices of the input graph $G$ such that modifying $G$ by complementing the subgraph induced by $S$ results in a graph satisfying t
Externí odkaz:
http://arxiv.org/abs/2202.13620
For a class $\mathcal{G}$ of graphs, the problem SUBGRAPH COMPLEMENT TO $\mathcal{G}$ asks whether one can find a subset $S$ of vertices of the input graph $G$ such that complementing the subgraph induced by $S$ in $G$ results in a graph in $\mathcal
Externí odkaz:
http://arxiv.org/abs/2103.02936
Autor:
Marx, Dániel, Sandeep, R. B.
Given a graph $G$ and an integer $k$, the $H$-free Edge Editing problem is to find whether there exists at most $k$ pairs of vertices in $G$ such that changing the adjacency of the pairs in $G$ results in a graph without any induced copy of $H$. The
Externí odkaz:
http://arxiv.org/abs/2004.11761
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.