Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Sanadhya, Shrey"'
Autor:
Kosloff, Zemer, Sanadhya, Shrey
We show that for every ergodic and aperiodic probability preserving system $(X,\mathcal{B},m,T)$, there exists $f:X\to \mathbb{Z}^d$, whose corresponding cocycle satisfies the $d$-dimensional local central limit theorem. We use the $2$-dimensional re
Externí odkaz:
http://arxiv.org/abs/2409.05087
Publikováno v:
DISCRETE ANALYSIS, 2024:13
An old theorem of Newman asserts that any tiling of $\mathbb{Z}$ by a finite set is periodic. A few years ago, Bhattacharya proved the periodic tiling conjecture in $\mathbb{Z}^2$. Namely, he proved that for a finite subset $F$ of $\mathbb{Z}^2$, if
Externí odkaz:
http://arxiv.org/abs/2301.11255
Bratteli-Vershik models have been very successfully applied to the study of various dynamical systems, in particular, in Cantor dynamics. In this paper, we study dynamics on the path spaces of generalized Bratteli diagrams that form models for non-co
Externí odkaz:
http://arxiv.org/abs/2212.13803
We show that translational tiling problems in a quotient of $\mathbb{Z}^d$ can be effectively reduced or ``simulated'' by translational tiling problems in $\mathbb{Z}^d$. In particular, for any $d \in \mathbb{N}$, $k < d$ and $N_1,\ldots,N_k \in \mat
Externí odkaz:
http://arxiv.org/abs/2211.07140
We study substitutions on countably infinite alphabet (without compactification) as Borel dynamical systems. We construct stationary and non-stationary generalized Bratteli-Vershik models for a class of such substitutions, known as left determined. I
Externí odkaz:
http://arxiv.org/abs/2203.14127
Publikováno v:
In Advances in Applied Mathematics May 2024 156
Autor:
Sanadhya, Shrey
We show that for any ergodic Lebesgue measure preserving transformation $f: [0,1) \rightarrow [0,1)$ and any decreasing sequence $\{b_i\}_{i=1}^{\infty}$ of positive real numbers with divergent sum, the set $$\underset{n=1}{\overset{\infty}{\cap}} \,
Externí odkaz:
http://arxiv.org/abs/2105.00301
Autor:
Sanadhya, Shrey
We show that if $S,T$ are two commuting automorphisms of standard Borel space such that they generate a free Borel $\Z^2$-action then $S$ and $T$ do not have same sets of real valued bounded coboundaries. We also prove a weaker form of Rokhlin Lemma
Externí odkaz:
http://arxiv.org/abs/2006.02925
Autor:
Bezuglyi, Sergey, Sanadhya, Shrey
We study cocycles of countable groups $\Gamma$ of Borel automorphisms of a standard Borel space $(X, \mathcal{B})$ taking values in a locally compact second countable group $G$. We prove that for a hyperfinite group $\Gamma$ the subgroup of coboundar
Externí odkaz:
http://arxiv.org/abs/2001.09205
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.