Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Samworth, RJ"'
We consider the nonparametric estimation of an S-shaped regression function. The least squares estimator provides a very natural, tuning-free approach, but results in a non-convex optimisation problem, since the inflection point is unknown. We show t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c84e5abe538b568214e8273250f2f059
https://www.repository.cam.ac.uk/handle/1810/336360
https://www.repository.cam.ac.uk/handle/1810/336360
We introduce a new method for high-dimensional, online changepoint detection in settings where a $p$-variate Gaussian data stream may undergo a change in mean. The procedure works by performing likelihood ratio tests against simple alternatives of di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aec37a9cdbbd7ff58fbca556f45e0be1
http://eprints.lse.ac.uk/113665/
http://eprints.lse.ac.uk/113665/
Autor:
Wang, T, Samworth, RJ
Changepoints are a very common feature of Big Data that arrive in the form of a data stream. In this paper, we study high-dimensional time series in which, at certain time points, the mean structure changes in a sparse subset of the coordinates. The
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::86890f2d3985311b1e2f079b960e2ceb
https://www.repository.cam.ac.uk/handle/1810/265277
https://www.repository.cam.ac.uk/handle/1810/265277
Autor:
Cannings, TI, Samworth, RJ
We introduce a very general method for high-dimensional classification, based on careful combination of the results of applying an arbitrary base classifier to random projections of the feature vectors into a lower-dimensional space. In one special c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c3a90e132b17fe547956c238fb301096
https://www.repository.cam.ac.uk/handle/1810/263576
https://www.repository.cam.ac.uk/handle/1810/263576
Autor:
Chen, Y, Samworth, RJ
We study generalised additive models, with shape restrictions (e.g. monotonicity, convexity, concavity) imposed on each component of the additive prediction function. We show that this framework facilitates a nonparametric estimator of each additive
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::0d48e3cb8f94e65ff57e727f98653055
http://eprints.lse.ac.uk/65752/
http://eprints.lse.ac.uk/65752/
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ferreira T; School of Clinical Medicine, University of Cambridge, Cambridge, UK tf385@cam.ac.uk., Collins AM; School of Public Health, Faculty of Medicine, Imperial College London, London, UK., Feng O; Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK., Samworth RJ; Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK., Horvath R; School of Clinical Medicine, University of Cambridge, Cambridge, UK.
Publikováno v:
BMJ open [BMJ Open] 2023 Sep 12; Vol. 13 (9), pp. e075598. Date of Electronic Publication: 2023 Sep 12.
Autor:
Chen Y; Statistical Laboratory, University of Cambridge, Cambridge, UK.; London School of Economics and Political Science, London, UK., Wang T; London School of Economics and Political Science, London, UK., Samworth RJ; Statistical Laboratory, University of Cambridge, Cambridge, UK.
Publikováno v:
Journal of the American Statistical Association [J Am Stat Assoc] 2023 May 26; Vol. 119 (546), pp. 1461-1472. Date of Electronic Publication: 2023 May 26 (Print Publication: 2024).
Autor:
Zhu Z; Statistical Laboratory University of Cambridge Cambridge UK.; Department of Statistics University of Michigan Ann Arbor Michigan USA., Wang T; Statistical Laboratory University of Cambridge Cambridge UK.; Department of Statistics London School of Economics London UK., Samworth RJ; Statistical Laboratory University of Cambridge Cambridge UK.
Publikováno v:
Journal of the Royal Statistical Society. Series B, Statistical methodology [J R Stat Soc Series B Stat Methodol] 2022 Nov; Vol. 84 (5), pp. 2000-2031. Date of Electronic Publication: 2022 Nov 20.
Autor:
Berrett TB; University of Warwick, Coventry CV4 7AL, UK., Samworth RJ; University of Cambridge, Cambridge CB2 1TN, UK.
Publikováno v:
Proceedings. Mathematical, physical, and engineering sciences [Proc Math Phys Eng Sci] 2021 Dec; Vol. 477 (2256), pp. 20210549. Date of Electronic Publication: 2021 Dec 08.