Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Samuel Petite"'
Publikováno v:
Discrete Analysis (2017)
On automorphism groups of Toeplitz subshifts, Discrete Analysis 2017:11, 19 pp. A discrete dynamical system is a space $X$ with some kind of structure, together with a map $\sigma\colon X\to X$ that preserves the structure. (For instance, if $X$ is
Externí odkaz:
https://doaj.org/article/7056e91a87304749990e4f216e6ca66f
Publikováno v:
Transactions of the American Mathematical Society. 374:3453-3489
Minimal Cantor systems of finite topological rank (that can be represented by a Bratteli-Vershik diagram with a uniformly bounded number of vertices per level) are known to have dynamical rigidity properties. We establish that such systems, when they
Autor:
P Cecchi Bernales, Valérie Berthé, Fabien Durand, Samuel Petite, Julien Leroy, Dominique Perrin
Publikováno v:
Monatshefte für Mathematik
Monatshefte für Mathematik, Springer Verlag, 2021, 194 (4), pp.687-717. ⟨10.1007/s00605-020-01488-3⟩
Monatshefte für Mathematik, Springer Verlag, 2021, 194 (4), pp.687-717. ⟨10.1007/s00605-020-01488-3⟩
Dimension groups are complete invariants of strong orbit equivalence for minimal Cantor systems. This paper studies a natural family of minimal Cantor systems having a finitely generated dimension group, namely the primitive unimodular proper S-adic
Autor:
Samuel Petite, María Isabel Cortez
Publikováno v:
Discrete & Continuous Dynamical Systems-A
Discrete & Continuous Dynamical Systems-A, 2020, 40 (5), pp.2891-2901. ⟨10.3934/dcds.2020153⟩
Discrete & Continuous Dynamical Systems-A, 2020, 40 (5), pp.2891-2901. ⟨10.3934/dcds.2020153⟩
In this article we study the centralizer of a minimal aperiodic action of a countable group on the Cantor set (an aperiodic minimal Cantor system). We show that any countable residually finite group is the subgroup of the centralizer of some minimal
Publikováno v:
Journal of modern dynamics
Journal of modern dynamics, American Institute of Mathematical Sciences, 2018, 13 (1), pp.147-161. ⟨10.3934/jmd.2018015⟩
Journal of modern dynamics, American Institute of Mathematical Sciences, 2018, 13 (1), pp.147-161. ⟨10.3934/jmd.2018015⟩
The set of automorphisms of a one-dimensional subshift \begin{document} $(X, σ)$ \end{document} forms a countable, but often very complicated, group. For zero entropy shifts, it has recently been shown that the automorphism group is more tame. We pr
Publikováno v:
Ergodic Theory and Dynamical Systems. 36:64-95
In this article, we study the automorphism group$\text{Aut}(X,{\it\sigma})$of subshifts$(X,{\it\sigma})$of low word complexity. In particular, we prove that$\text{Aut}(X,{\it\sigma})$is virtually$\mathbb{Z}$for aperiodic minimal subshifts and certain
Publikováno v:
Annales Henri Poincaré
Annales Henri Poincaré, Springer Verlag, 2017, 18 (9), pp.2905-2943. ⟨10.1007/s00023-017-0589-7⟩
Annales Henri Poincaré, Springer Verlag, 2017, 18 (9), pp.2905-2943. ⟨10.1007/s00023-017-0589-7⟩
The Frenkel–Kontorova model describes how an infinite chain of atoms minimizes the total energy of the system when the energy takes into account the interaction of nearest neighbors as well as the interaction with an exterior environment. An almost
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3ade2bf6d6e8694247ab77960dfd538e
http://hdl.handle.net/20.500.12278/8865
http://hdl.handle.net/20.500.12278/8865
Autor:
Samuel Petite, José Aliste-Prieto
Publikováno v:
Monatshefte für Mathematik
Monatshefte für Mathematik, Springer Verlag, 2016, 181, pp.285-300. ⟨10.1007/s00605-016-0921-1⟩
Monatshefte für Mathematik, Springer Verlag, 2016, 181, pp.285-300. ⟨10.1007/s00605-016-0921-1⟩
We show that the identity component of the group of homeomorphisms that preserve all leaves of a R^d-tilable lamination is simple. Moreover, in the one dimensional case, we show that this group is uniformly perfect. We obtain a similar result for a d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a99c90df20c9f1b081b5f4d298eabd9f
https://hal.archives-ouvertes.fr/hal-01053917
https://hal.archives-ouvertes.fr/hal-01053917
Publikováno v:
Ergodic Theory and Dynamical Systems
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016
HAL
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016
HAL
International audience; In this article we study the automorphism group Aut(X, σ) of a minimal subshift (X, σ) of low word complexity. In particular, we prove that Aut(X, σ) is virtually Z for aperiodic minimal subshifts with affine complexity on
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c23d964e94019b8a9a8d17eb775ae99e
https://hal.archives-ouvertes.fr/hal-01076427/document
https://hal.archives-ouvertes.fr/hal-01076427/document
Publikováno v:
Ergodic Theory and Dynamical Systems
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, ⟨10.1017/etds.2015.26⟩
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Ergodic Theory and Dynamical Systems, Cambridge University Press (CUP), 2016, ⟨10.1017/etds.2015.26⟩
We give conditions on the subgroups of the circle to be realized as the subgroups of eigenvalues of minimal Cantor systems belonging to a determined strong orbit equivalence class. Actually, the additive group of continuous eigenvalues E(X,T) of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9d8eb6bc63a14c82246c992bd4c68709