Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Samuel, Genheden"'
Autor:
Lakshidaa Saigiridharan, Alan Kai Hassen, Helen Lai, Paula Torren-Peraire, Ola Engkvist, Samuel Genheden
Publikováno v:
Journal of Cheminformatics, Vol 16, Iss 1, Pp 1-11 (2024)
Abstract We present an updated overview of the AiZynthFinder package for retrosynthesis planning. Since the first version was released in 2020, we have added a substantial number of new features based on user feedback. Feature enhancements include po
Externí odkaz:
https://doaj.org/article/e108db6d41a54ae9911ac63540ba4e54
Publikováno v:
Journal of Cheminformatics, Vol 16, Iss 1, Pp 1-20 (2024)
Abstract Stakeholders of machine learning models desire explainable artificial intelligence (XAI) to produce human-understandable and consistent interpretations. In computational toxicity, augmentation of text-based molecular representations has been
Externí odkaz:
https://doaj.org/article/43fa43e4986f442aac4b60eb86525143
Publikováno v:
Artificial Intelligence in the Life Sciences, Vol 2, Iss , Pp 100041- (2022)
Externí odkaz:
https://doaj.org/article/5599d8186a024923ae4f5854c9b10b88
Autor:
Jeroen M. Maertens, Simone Scrima, Matteo Lambrughi, Samuel Genheden, Cecilia Trivellin, Leif A. Eriksson, Elena Papaleo, Lisbeth Olsson, Maurizio Bettiga
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-16 (2021)
Abstract The use of lignocellulosic-based fermentation media will be a necessary part of the transition to a circular bio-economy. These media contain many inhibitors to microbial growth, including acetic acid. Under industrially relevant conditions,
Externí odkaz:
https://doaj.org/article/eb4202100acf44439af78cf73782172f
Autor:
Samuel Genheden, Amol Thakkar, Veronika Chadimová, Jean-Louis Reymond, Ola Engkvist, Esben Bjerrum
Publikováno v:
Journal of Cheminformatics, Vol 12, Iss 1, Pp 1-9 (2020)
Abstract We present the open-source AiZynthFinder software that can be readily used in retrosynthetic planning. The algorithm is based on a Monte Carlo tree search that recursively breaks down a molecule to purchasable precursors. The tree search is
Externí odkaz:
https://doaj.org/article/c0729c46b2e9496fbdac659e5fe0f8ae
Publikováno v:
Journal of Chemical Information and Modeling. 63:1841-1846
We introduce the AiZynthTrain Python package for training synthesis models in a robust, reproducible, and extensible way. It contains two pipelines that create a template-based one-step retrosynthesis model and a RingBreaker model that can be straigh
Autor:
Michael P. Maloney, Connor W. Coley, Samuel Genheden, Nessa Carson, Paul Helquist, Per-Ola Norrby, Olaf Wiest
Publikováno v:
The Journal of Organic Chemistry. 88:5239-5241
Autor:
Lina Lindahl, Samuel Genheden, Fábio Faria-Oliveira, Stefan Allard, Leif A. Eriksson, Lisbeth Olsson, Maurizio Bettiga
Publikováno v:
Microbial Cell, Vol 5, Iss 1, Pp 42-55 (2017)
Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are ri
Externí odkaz:
https://doaj.org/article/419307efdf194cb48b79cfc829f812c0
Multi-step retrosynthesis problem can be solved by a search algorithm, such as Monte Carlo tree search (MCTS). The performance of multistep retrosynthesis, as measured by a trade-off in search time and route solvability, therefore depends on the hype
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a6d29dac523440ffdad86568ddd1b802
https://doi.org/10.26434/chemrxiv-2023-2nf51
https://doi.org/10.26434/chemrxiv-2023-2nf51
Autor:
Esben Jannik Bjerrum, Samuel Genheden
Publikováno v:
Digital Discovery. 1:527-539
PaRoutes is a framework benchmarking multi-step retrosynthesis methods. It consists of synthetic routes extracted from the patent literature, stock compounds, as well as scripts to compute route quality and route diversity metrics.