Zobrazeno 1 - 10
of 35 036
pro vyhledávání: '"Sample path"'
Autor:
Xue, Xiaofeng
In this paper, we extend the central limit theorem of the occupation time of the voter model on the lattice $\mathbb{Z}^d$ given in \cite{Cox1983} to the sample path case for $d\geq 3$. The proof of our main result utilizes the resolvent strategy and
Externí odkaz:
http://arxiv.org/abs/2412.05064
We consider the following stochastic space-time fractional diffusion equation with vanishing initial condition:$$ \partial^{\beta} u(t, x)=- \left(-\Delta\right)^{\alpha / 2} u(t, x)+ I_{0+}^{\gamma}\left[\dot{W}(t, x)\right],\quad t\in[0,T],\: x \in
Externí odkaz:
http://arxiv.org/abs/2411.12192
Autor:
Schied, Alexander, Zhang, Zhenyuan
Fractional Wiener--Weierstrass bridges are a class of Gaussian processes that arise from replacing the trigonometric function in the construction of classical Weierstrass functions by a fractional Brownian bridge. We investigate the sample path prope
Externí odkaz:
http://arxiv.org/abs/2411.05204
Autor:
Su, Zhe, Rhee, Chang-Han
The large deviations theory for heavy-tailed processes has seen significant advances in the recent past. In particular, Rhee et al. (2019) and Bazhba et al. (2020) established large deviation asymptotics at the sample-path level for L\'evy processes
Externí odkaz:
http://arxiv.org/abs/2410.20799
Autor:
Dalang, Robert C., Sanz-Solé, Marta
We consider an SPDE driven by a parabolic second order partial differential operator with a nonlinear random external forcing defined by a Gaussian noise that is white in time and has a spatially homogeneous covariance. We prove existence and uniquen
Externí odkaz:
http://arxiv.org/abs/2410.23995
Autor:
Befekadu, Getachew K.
We consider a typical learning problem of point estimations for modeling of nonlinear functions or dynamical systems in which generalization, i.e., verifying a given learned model, can be embedded as an integral part of the learning process or dynami
Externí odkaz:
http://arxiv.org/abs/2408.02167
We study a Volterra Gaussian process of the form $X(t)=\int^t_0K(t,s)d{W(s)},$ where $W$ is a Wiener process and $K$ is a continuous kernel. In dimension one, we prove a law of the iterated logarithm, discuss the existence of local times and verify a
Externí odkaz:
http://arxiv.org/abs/2409.04377
Autor:
Vestring, Yann1 (AUTHOR) yannvestring@yahoo.fr, Tavakoli, Javad1 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Dec2024, Vol. 12 Issue 23, p3641. 11p.
Autor:
Anugu, Sumith Reddy, Pang, Guodong ⁎
Publikováno v:
In Stochastic Processes and their Applications October 2024 176
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.