Zobrazeno 1 - 10
of 80
pro vyhledávání: '"Samodivkin, Vladimir"'
Autor:
Samodivkin, Vladimir
A graph $G=(V,E)$ is $\gamma$-excellent if $V$ is a union of all $\gamma$-sets of $G$, where $\gamma$ stands for the domination number. Let $\mathcal{I}$ be a set of all mutually nonisomorphic graphs and $\emptyset \not= \mathcal{H} \subsetneq \mathc
Externí odkaz:
http://arxiv.org/abs/2010.03219
Autor:
Samodivkin, Vladimir
In this paper we begin an exploration of several domination-related parameters (among which are the total, restrained, total restrained, paired, outer connected and total outer connected domination numbers) in the generalized lexicographic product (G
Externí odkaz:
http://arxiv.org/abs/2007.13095
For a function $f : V(G ) \rightarrow \{0, 1, 2\}$ we denote by $V_i$ the set of vertices to which the value $i$ is assigned by $f$, i.e. $V_i = \{ x \in V (G ) : f(x ) = i \}$. If a function $f: V(G) \rightarrow \{0,1,2\}$ satisfying the condition t
Externí odkaz:
http://arxiv.org/abs/1810.00246
Autor:
Samodivkin, Vladimir
Given a graph $G = (V,E)$ and two its distinct vertices $u$ and $v$. The $(u,v)$-$P_k$-{\em addition graph} of $G$ is the graph $G_{u,v,k-2}$ obtained from disjoint union of $G$ and a path $P_k: x_0,x_1,..,x_{k-1}$, $k \geq 2$, by identifying the ver
Externí odkaz:
http://arxiv.org/abs/1801.04965
Autor:
Samodivkin, Vladimir
A Roman dominating function (RD-function) on a graph $G = (V(G), E(G))$ is a labeling $f : V(G) \rightarrow \{0, 1, 2\}$ such that every vertex with label $0$ has a neighbor with label $2$. The weight $f(V(G))$ of a RD-function $f$ on $G$ is the valu
Externí odkaz:
http://arxiv.org/abs/1709.05052
Autor:
Samodivkin, Vladimir
A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V \rightarrow \{0, 1, 2\}$ such that every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = \Sigma_{v\in V} f(v)$. The Roman domin
Externí odkaz:
http://arxiv.org/abs/1610.00297
Autor:
Samodivkin, Vladimir
Publikováno v:
In Discrete Applied Mathematics 15 September 2021 300:77-84
Autor:
Samodivkin, Vladimir
For a graph $G$ let $\gamma (G)$ be its domination number. We define a graph G to be (i) a hypo-efficient domination graph (or a hypo-$\mathcal{ED}$ graph) if $G$ has no efficient dominating set (EDS) but every graph formed by removing a single verte
Externí odkaz:
http://arxiv.org/abs/1601.02234