Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Samir R. Chettri"'
Autor:
Robert F. Cromp, Samir R. Chettri
Publikováno v:
Telematics and Informatics. 10:187-198
In this paper we discuss a neural network architecture (the Probabilistic Neural Net or the PNN) that, to the best of our knowledge, has not previously been applied to remotely sensed data. The PNN is a supervised non-parametric classification algori
Publikováno v:
Telematics and Informatics. 9:145-156
Classification accuracies of a backpropagation neural network are discussed and compared with a maximum likelihood classifier (MLC) with multivariate normal class models. We have found that, because of its nonparametric nature, the neural network out
Publikováno v:
AIP Conference Proceedings.
In Jefferys and Berger apply Bayesian model selection to the problem of choosing between rival theories, in particular between Einstein’s theory of general relativity (GR) and Newtonian gravity (NG). [1] presents a debate between Harold Jeffreys an
Publikováno v:
SPIE Proceedings.
In classification, the goal is to assign an input vector to a discrete number of output classes. Classifier design has a long history and they have been put to a large number of uses. In this paper we continue the task of categorizing classifiers by
Autor:
Nathan S. Netanyahu, Samir R. Chettri
Publikováno v:
25th AIPR Workshop: Emerging Applications of Computer Vision.
This paper addresses the importance of a maximum entropy formulation for the extraction of content from a single picture element in a remotely sensed image. Most conventional classifiers assume a winner take all procedure in assigning classes to a pi
Publikováno v:
SPIE Proceedings.
In this research we compare general harmonic wavelet transforms (GHWT), constant Q transforms (CQT) and the Cone kernel time-frequency distribution (CKTFD) for the analysis of musical signals. The first two consist of a series of band pass filters th
Publikováno v:
SPIE Proceedings.
The Direct Linear Transform (DLT) is widely used in the calibration and reconstruction problem in computer vision. The calibration/reconstruction problem can be written as [Y] equals [X][B] + [e]. Where [Y] is a known vector, [X] is a known matrix, [
Publikováno v:
SPIE Proceedings.
In computer vision and graphics, the square or rectangular tessellation is most commonly used. The hexagonal lattice has not been studied as frequently. In this paper we project squares and circles on each of these grids, digitize these figures and o
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.