Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Samia Zermani"'
Autor:
Jeffrey Morgan, Samia Zermani
Publikováno v:
Results in Applied Mathematics, Vol 23, Iss , Pp 100486- (2024)
We analyse a reaction–diffusion system describing the growth of microbial species in a model of flocculation type that arises in biology. A generalized model is formulated on a one dimensional bounded domain with feed terms at one end of the interv
Externí odkaz:
https://doaj.org/article/350ed4938a6e4b1d9ecadca9241b99bf
Publikováno v:
Opuscula Mathematica, Vol 36, Iss 3, Pp 315-336 (2016)
Let \(\Omega\) be a bounded domain in \(\mathbb{R}^{n}\) (\(n\geq 2\)) with a smooth boundary \(\partial \Omega\). We discuss in this paper the existence and the asymptotic behavior of positive solutions of the following semilinear elliptic system \[
Externí odkaz:
https://doaj.org/article/6b8daeb3c86949edbf853277b3e05af0
Autor:
Syrine Masmoudi, Samia Zermani
Publikováno v:
Opuscula Mathematica, Vol 36, Iss 5, Pp 613-629 (2016)
In this paper, we discuss existence, uniqueness and boundary behavior of a positive solution to the following nonlinear Sturm-Liouville problem \[\begin{aligned}&\frac{1}{A}(Au^{\prime })^{\prime }+a(t)u^{\sigma}=0\;\;\text{in}\;(0,1),\\ &\lim\limits
Externí odkaz:
https://doaj.org/article/13253a6e28df403db7a2dba19970a923
Autor:
Syrine Masmoudi, Samia Zermani
Publikováno v:
Electronic Journal of Differential Equations, Vol 2015, Iss 171,, Pp 1-12 (2015)
This article concerns the existence, uniqueness and boundary behavior of positive solutions to the nonlinear problem $$\displaylines{ \frac{1}{A}(A\Phi _p(u'))'+a_1(x)u^{\alpha_1}+a_2(x)u^{\alpha_2}=0, \quad \text{in } (0,1), \cr \lim_{x\to 0}A\P
Externí odkaz:
https://doaj.org/article/de8201a708114a6d96124c8aca15f128
Autor:
Nahla Abdellatif, Samia Zermani
Publikováno v:
Journal of Mathematical Analysis and Applications. 506:125484
This paper is devoted to the mathematical analysis of a flocculation system that arises in biology. Under certain sufficient conditions, we first establish a few global existence results corresponding, respectively, to the cases of bounded rates and
Publikováno v:
Mediterranean Journal of Mathematics. 12:1265-1285
We consider the following semilinear fractional initial value problem $$D^{\alpha} u(x) = a(x)u^{\sigma} (x), x\in (0, 1) \quad {\rm and} \quad \lim\limits_{x \longrightarrow0^{+}}x^{1 - \alpha} u(x) = 0,$$ where \({0 < \alpha < 1, \sigma < 1}\) and
Autor:
Samia Zermani, Syrine Masmoudi
Publikováno v:
Opuscula Mathematica, Vol 36, Iss 5, Pp 613-629 (2016)
In this paper, we discuss existence, uniqueness and boundary behavior of a positive solution to the following nonlinear Sturm-Liouville problem \[\begin{aligned}&\frac{1}{A}(Au^{\prime })^{\prime }+a(t)u^{\sigma}=0\;\;\text{in}\;(0,1),\\ &\lim\limits
Publikováno v:
Opuscula Mathematica, Vol 36, Iss 3, Pp 315-336 (2016)
Let \(\Omega\) be a bounded domain in \(\mathbb{R}^{n}\) (\(n\geq 2\)) with a smooth boundary \(\partial \Omega\). We discuss in this paper the existence and the asymptotic behavior of positive solutions of the following semilinear elliptic system \[