Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Sambarino, Martin"'
We explore the relation of weak conjugacy in the group of homeomorphisms isotopic to the identity, for surfaces.
Comment: 18 pages, 2 figures
Comment: 18 pages, 2 figures
Externí odkaz:
http://arxiv.org/abs/2407.01042
Autor:
Sambarino, Martín, Vieitez, José
We give sufficient conditions for an expansive partially hyperbolic diffeomorphism with one-dimensional center to be (topologically) Anosov.
Comment: 14 pages
Comment: 14 pages
Externí odkaz:
http://arxiv.org/abs/2307.14484
Autor:
Calvez, Patrice Le, Sambarino, Martin
Let $S$ be a closed surface of genus $g\geq 1$, furnished with an area form $\omega$. We show that there exists an open and dense set ${\mathcal O_r}$ of the space of Hamiltonian diffeomorphisms of class $C^r$, $1\leq r\leq\infty$, endowed with the $
Externí odkaz:
http://arxiv.org/abs/2306.03499
We introduce the notion of \textit{fibered lifted partially hyperbolic diffeomorphisms} and we prove that any partially hyperbolic diifeomorphism isotopic to a fibered lifted one where the isotopy take place inside partially hyperbolic systems is \te
Externí odkaz:
http://arxiv.org/abs/2302.01951
Autor:
Calvez, Patrice Le, Sambarino, Martin
We show that C^r generically in the space of C^r conservative diffeomorphisms of a compact surface, every hyperbolic periodic point has a transverse homoclinic orbit
Externí odkaz:
http://arxiv.org/abs/1912.06792
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Passeggi, Alejandro, Sambarino, Martín
We show that if there exists a counter example for the rational case of the Franks-Misiurewicz conjecture, then it must exhibit unbounded deviations in the complementary direction of its rotation set.
Externí odkaz:
http://arxiv.org/abs/1803.03294
We prove that the set of diffeomorphisms having at most finitely many attractors contains a dense and open subset of the space of $C^1$ partially hyperbolic diffeomorphisms with one-dimensional center. This is obtained thanks to a robust geometric pr
Externí odkaz:
http://arxiv.org/abs/1706.08684
We show that a toral homeomorphism which is homotopic to the identity and topologically semiconjugate to an irrational rotation of the circle is always a pseudo-rotation (i.e. its rotation set is a single point). In combination with recent results, t
Externí odkaz:
http://arxiv.org/abs/1611.05498