Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Samani, Elahe Khalili"'
Autor:
Samani, Elahe Khalili, Radeschi, Marco
We prove that if a compact, simply connected Riemannian $G$-manifold $M$ has orbit space $M/G$ isometric to some other quotient $N/H$ with $N$ having zero topological entropy, then $M$ is rationally elliptic. This result, which generalizes most condi
Externí odkaz:
http://arxiv.org/abs/2312.08202
Autor:
Radeschi, Marco, Samani, Elahe Khalili
In this paper, we establish a number of results about the topology of the leaves of a closed singular Riemannian foliation $(M,\fol)$. If $M$ is simply connected, we prove that the leaves are finitely covered by nilpotent spaces, and characterize the
Externí odkaz:
http://arxiv.org/abs/2203.15910
By replacing the torus with an elementary abelian two-group, we generalize the maximal symmetry result of Grove and Searle and the half-maximal symmetry result of Wilking for positively curved manifolds with an isometric torus action.
Comment: S
Comment: S
Externí odkaz:
http://arxiv.org/abs/2110.13345
Autor:
Samani, Elahe Khalili
Apart from spheres and an infinite family of manifolds in dimension seven, Bazaikin spaces are the only known examples of simply connected Riemannian manifolds with positive sectional curvature in odd dimensions. We consider positively curved Riemann
Externí odkaz:
http://arxiv.org/abs/1905.11770
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.