Zobrazeno 1 - 10
of 215
pro vyhledávání: '"Samadani, Ali"'
As more and more infection-specific machine learning models are developed and planned for clinical deployment, simultaneously running predictions from different models may provide overlapping or even conflicting information. It is important to unders
Externí odkaz:
http://arxiv.org/abs/2311.09329
Autor:
Babaei, Kosar, Azimi Nezhad, Mohsen, Sedigh Ziabari, Seyedeh Nafise, Mirzajani, Ebrahim, Mozdarani, Hossein, Sharami, Seyedeh Hajar, Farzadi, Sara, Mirhafez, Seyed Reza, Naghdipour Mirsadeghi, Misa, Norollahi, Seyedeh Elham, Saadatian, Zahra, Samadani, Ali Akbar
Publikováno v:
In Heliyon 15 August 2024 10(15)
Autor:
Norollahi, Seyedeh Elham, Yousefzadeh-Chabok, Shahrokh, Yousefi, Bahman, Nejatifar, Fatemeh, Rashidy-pour, Ali, Samadani, Ali Akbar
Publikováno v:
In Biomedicine & Pharmacotherapy August 2024 177
Autor:
Babaei, Kosar, Aziminezhad, Mohsen, Mirzajani, Ebrahim, Mozdarani, Hossein, Sharami, Seyedeh Hajar, Norollahi, Seyedeh Elham, Samadani, Ali Akbar
Publikováno v:
In Toxicology Reports June 2024 12:546-563
Publikováno v:
In International Immunopharmacology 30 May 2024 133
There exist significant gaps in research about how to design efficient in-bed lying posture tracking systems. These gaps can be articulated through several research questions as follows. First, can we design a single-sensor, pervasive, and inexpensiv
Externí odkaz:
http://arxiv.org/abs/2006.10931
Body movements are an important communication medium through which affective states can be discerned. Movements that convey affect can also give machines life-like attributes and help to create a more engaging human-machine interaction. This paper pr
Externí odkaz:
http://arxiv.org/abs/2006.06071
Publikováno v:
In Artificial Intelligence In Medicine December 2023 146
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The visual scoring of arousals during sleep routinely conducted by sleep experts is a challenging task warranting an automatic approach. This paper presents an algorithm for automatic detection of arousals during sleep. Using the Physionet/CinC Chall
Externí odkaz:
http://arxiv.org/abs/1810.02726