Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Salvatore Addolorata"'
Publikováno v:
Advanced Nonlinear Studies, Vol 21, Iss 2, Pp 461-488 (2021)
The aim of this paper is investigating the existence of one or more weak solutions of the coupled quasilinear elliptic system of gradient type
Externí odkaz:
https://doaj.org/article/f47d6b1130ba48cf8e8359e2d873fcc0
The aim of this paper is investigating the existence of at least one nontrivial bounded solution of the new asymptotically ``linear'' problem \[ \left\{ \begin{array}{ll} - {\rm div} \left[\left(A_0(x) + A(x) |u|^{ps}\right) |\nabla u|^{p-2} \nabla u
Externí odkaz:
http://arxiv.org/abs/2408.12954
Publikováno v:
Advances in Nonlinear Analysis, Vol 7, Iss 3, Pp 353-364 (2018)
The aim of this paper is to investigate the existence of solutions of the non-local elliptic problem
Externí odkaz:
https://doaj.org/article/9b785fb17aeb4292b37db0ccfd1ba0b2
We prove the existence of multiple signed bounded solutions for a quasilinear elliptic equation with concave and convex nonlinearities. For this, we use a variational approach in an intersection Banach space indroduced by Candela and Palmieri, and a
Externí odkaz:
http://arxiv.org/abs/2403.17821
We study the quasilinear equation $(P)\qquad - {\rm div} (a(x,u,\nabla u)) +A_t(x,u,\nabla u) + |u|^{p-2}u\ =\ g(x,u) \qquad \hbox{in $\R^N$,} $ with $N\ge 3$ and $p > 1$. Here, we suppose $A : \R^N \times \R \times \R^N \to \R$ is a given ${C}^{1}$-
Externí odkaz:
http://arxiv.org/abs/2310.10456
This paper deals with the existence and multiplicity of solutions for the generalized $(p, q)$-Laplacian equation \begin{align*} &-{\text{ div}}(A(x, u)|\nabla u|^{p-2}\nabla u) +\frac1p A_t(x, u)|\nabla u|^p -{\text{ div}}(B(x, u)|\nabla u|^{q-2}\na
Externí odkaz:
http://arxiv.org/abs/2309.13364
Autor:
Barile Sara, Salvatore Addolorata
Publikováno v:
Advances in Nonlinear Analysis, Vol 4, Iss 1, Pp 25-35 (2015)
We study the nonlinear elliptic system of Lane–Emden type -Δu = sgn(v) |v|p-1 in Ω, -Δv = f(x,u) in Ω, u = v = 0 on ∂Ω, where Ω is an open bounded subset of ℝN, N ≥ 2, p > 1 and f : Ω × ℝ → ℝ is a Carathéodory function satisfyi
Externí odkaz:
https://doaj.org/article/903247c6e2684655a123371583e542ce
Publikováno v:
Calc. Var. Partial Differential Equations, 61, 220 (2022)
In this paper we establish a new existence result for the quasilinear elliptic problem \[ -{\rm div}(A(x,u)|\nabla u|^{p-2}\nabla u) +\frac1p A_t(x,u)|\nabla u|^p + V(x)|u|^{p-2} u = g(x,u)\quad\mbox{ in } \mathbb{R}^N, \] with $N\ge 2$, $p>1$ and $V
Externí odkaz:
http://arxiv.org/abs/2208.11611
Publikováno v:
Adv. Nonlinear Stud. 21 (2021) 461-488
The aim of this paper is investigating the existence of one or more weak solutions of the coupled quasilinear elliptic system of gradient type \[ (P)\qquad \left\{ \begin{array}{ll} - {\rm div} (A(x, u)\vert\nabla u\vert^{p_1 -2} \nabla u) + \frac{1}
Externí odkaz:
http://arxiv.org/abs/2208.10794
The aim of this paper is investigating the existence of one or more critical points of a family of functionals which generalizes the model problem \[ \bar J(u)\ =\ \frac1p\ \int_\Omega \bar A(x,u)|\nabla u|^p dx - \int_\Omega G(x,u) dx \] in the Bana
Externí odkaz:
http://arxiv.org/abs/1911.04847