Zobrazeno 1 - 10
of 109
pro vyhledávání: '"Salort, A. M."'
Autor:
Salort, Ariel M.
In this article we consider the following weighted nonlinear eigenvalue problem for the $g-$Laplacian $$ -\mathop{\text{ div}}\left( g(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right) = \lambda w(x) h(|u|)\frac{u}{|u|} \quad \text{ in }\Omega\subset \ma
Externí odkaz:
http://arxiv.org/abs/2104.07562
Autor:
Salort, Ariel M.
In this article we study the homogenization rates of eigenvalues of a Steklov problem with rapidly oscillating periodic weight functions. The results are obtained via a careful study of oscillating functions on the boundary and a precise estimate of
Externí odkaz:
http://arxiv.org/abs/2009.12460
In this paper we give sufficient conditions to obtain continuity results of solutions for the so called {\em $\phi-$Laplacian} $\Delta_\phi$ with respect to domain perturbations. We point out that this kind of results can be extended to a more genera
Externí odkaz:
http://arxiv.org/abs/2002.09114
In this paper we deal with the stability of solutions of fractional $p-$Laplace problems with nonlinear sources when the fractional parameter $s$ goes to 1. We prove a general convergence result for general weak solutions which is applied to study th
Externí odkaz:
http://arxiv.org/abs/1910.04815
Autor:
Salort, Ariel M.
In this article we study eigenvalues and minimizers of a fractional non-standard growth problem. We prove several properties on this quantities and their corresponding eigenfunctions.
Externí odkaz:
http://arxiv.org/abs/1807.03209
This paper concerns with the study of the asymptotic behavior of the solutions to a family of fractional type problems on a bounded domain, satisfying homogeneous Dirichlet boundary conditions. The family of differential operators includes the fracti
Externí odkaz:
http://arxiv.org/abs/1807.01669
In this paper we define the fractional order Orlicz-Sobolev spaces, and prove its convergence to the classical Orlicz-Sobolev spaces when the fractional parameter $s\uparrow 1$ in the spirit of the celebrated result of Bourgain-Brezis-Mironescu. We t
Externí odkaz:
http://arxiv.org/abs/1707.03267
In this note we analyze how perturbations of a ball $\mathfrak{B}_r \subset \mathbb{R}^n$ behaves in terms of their first (non-trivial) Neumann and Dirichlet $\infty-$eigenvalues when a volume constraint $\\mathscr{L}^n(\Omega) = \mathscr{L}^n(\mathf
Externí odkaz:
http://arxiv.org/abs/1705.03046
In this article we prove that the first eigenvalue of the $\infty-$Laplacian $$ \left\{ \begin{array}{rclcl} \min\{ -\Delta_\infty v,\, |\nabla v|-\lambda_{1, \infty}(\Omega) v \} & = & 0 & \text{in} & \Omega v & = & 0 & \text{on} & \partial \Omega,
Externí odkaz:
http://arxiv.org/abs/1704.01875
In this article we study the behavior as $p \nearrow+\infty$ of the Fucik spectrum for $p$-Laplace operator with zero Dirichlet boundary conditions in a bounded domain $\Omega\subset \mathbb{R}^n$. We characterize the limit equation, and we provide a
Externí odkaz:
http://arxiv.org/abs/1703.08234