Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Saloni Kumari"'
Autor:
Saloni, Kumari, Yadav, Anoot Kumar
Let $(A,\m)$ be a Cohen-Macaulay local ring of dimension $d\geq 3$, $I$ an $\m$-primary ideal and $\mathcal{I}=\{I_n\}_{n\geq 0}$ an $I$-admissible filtration. We establish bounds for the third Hilbert coefficient: (i) $e_3(\mathcal{I})\leq e_2(\math
Externí odkaz:
http://arxiv.org/abs/2409.14860
Autor:
Saloni, Kumari, Yadav, Anoot Kumar
Let $(R,\mathfrak{m})$ be a Cohen-Macaulay local ring of dimension $d\geq 3$ and $I$ an integrally closed $\mathfrak{m}$-primary ideal. We establish bounds for the third Hilbert coefficient $e_3(I)$ in terms of the lower Hilbert coefficients $e_i(I),
Externí odkaz:
http://arxiv.org/abs/2304.04524
Autor:
Mandal, Mousumi, Saloni, Kumari
Let $(R,\mathfrak{m})$ be a Cohen-Macaulay local ring of dimension $d\geq 3$ and $I$ an $\mathfrak{m}$-primary ideal of $R$. Let $r_J(I)$ be the reduction number of $I$ with respect to a minimal reduction $J$ of $I$. Suppose depth $G(I)\geq d-3$. We
Externí odkaz:
http://arxiv.org/abs/2209.13319
Autor:
Saloni, Kumari
Let $(A,\mathfrak m)$ be a Noetherian local ring of dimension $d>0$ with infinite residue field and $I$ an $\mathfrak{m}$-primary ideal. Let $\mathcal I$ be an $I$-good filtration. We study an equality of Hilbert coefficients, first given by Elias an
Externí odkaz:
http://arxiv.org/abs/2102.04218
Autor:
Saloni, Kumari, Yadav, Anoot Kumar
Publikováno v:
In Journal of Algebra 15 January 2024 638:214-237
Autor:
Saloni, Kumari
Let $(A,\mathfrak{m})$ be a Noetherian local ring of dimension $d>0$ and $I$ an $\mathcal{I}$-primary ideal of $A$. In this paper, we discuss a sufficient condition, for the Buchsbaumness of the local ring $A$ to be passed onto the associated graded
Externí odkaz:
http://arxiv.org/abs/2003.10156
Autor:
Masuti, Shreedevi K., Saloni, Kumari
Let $(R,m)$ be a Noetherian local ring of dimension $d$ and $K,Q$ be $m$-primary ideals in $R.$ In this paper we study the finiteness properties of the sets $\Lambda_i^K(R):=\{g_i^K(Q): Q$ is a parameter ideal of $R\},$ where $g_i^K(Q)$ denotes the H
Externí odkaz:
http://arxiv.org/abs/1702.07913
Publikováno v:
Medical Journal of Dr. D.Y. Patil Vidyapeeth, Vol 15, Iss 8, Pp 223-228 (2022)
Introduction: Media have never been as essential as it has become during the time of pandemic. Every information related to disease, prevention, and precaution was on media. Since most of the people confined to their homes, they used media not only t
Externí odkaz:
https://doaj.org/article/b799f54892ff43fabda36fd11acce089
Autor:
Saikia, Anupam, Saloni, Kumari
Let $(R,\mathfrak{m})$ be a Noetherian local ring of dimension $d>0$ and depth R$\geq d-1$. Let $Q$ be a parameter ideal of $R$. In this paper, we derive uniform lower and upper bounds for the Hilbert coefficient $e_i(Q)$ under certain assumptions on
Externí odkaz:
http://arxiv.org/abs/1611.03431
Autor:
Saloni, Kumari
Let $(R, \mathfrak m)$ be an unmixed Noetherian local ring, Q a parameter ideal and $K$ an $\mathfrak m$-primary ideal of $R$ containing $Q$. We give a necessary and sufficient condition for $R$ to be Cohen-Macaulay in terms of $g_0(Q)$ and $g_1(Q)$,
Externí odkaz:
http://arxiv.org/abs/1609.07746