Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Saloni Dash"'
Autor:
Arshia Arya, Soham De, Dibyendu Mishra, Gazal Shekhawat, Ankur Sharma, Anmol Panda, Faisal Lalani, Parantak Singh, Ramaravind Kommiya Mothilal, Rynaa Grover, Sachita Nishal, Saloni Dash, Shehla Shora, Syeda Zainab Akbar, Joyojeet Pal
Publikováno v:
Proceedings of the International AAAI Conference on Web and Social Media. 16:1201-1207
Databases of highly networked individuals have been indispensable in studying narratives and influence on social media. To support studies on Twitter in India, we present a systematically categorized database of accounts of influence on Twitter in In
Publikováno v:
ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies (COMPASS).
Publikováno v:
14th ACM Web Science Conference 2022.
Influencers are key to the nature and networks of information propagation on social media. Influencers are particularly important in political discourse through their engagement with issues, and may derive their legitimacy either solely or in large p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c510f30a175731e536429e53a645a3de
http://arxiv.org/abs/2105.08361
http://arxiv.org/abs/2105.08361
Dangerous speech on social media platforms can be framed as blatantly inflammatory, or be couched in innuendo. It is also centrally tied to who engages it - it can be driven by openly sectarian social media accounts, or through subtle nudges by influ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c418d4e8c9c27768c7dcefd98c2a0bf
Publikováno v:
ESANN 2021 proceedings.
Publikováno v:
Neurocomputing
Neurocomputing, Elsevier, 2020, 416, pp.244-255. ⟨10.1016/j.neucom.2019.12.136⟩
Neurocomputing, 2020, 416, pp.244-255. ⟨10.1016/j.neucom.2019.12.136⟩
Neurocomputing, Elsevier, 2020, 416, pp.244-255. ⟨10.1016/j.neucom.2019.12.136⟩
Neurocomputing, 2020, 416, pp.244-255. ⟨10.1016/j.neucom.2019.12.136⟩
International audience; We develop metrics for measuring the quality of synthetic health data for both education and research. We use novel and existing metrics to capture a synthetic dataset's resemblance, privacy, utility and footprint. Using these
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::82766c99bc1a285bffbbfad3f44d7508
https://hal.inria.fr/hal-03158544/document
https://hal.inria.fr/hal-03158544/document
Publikováno v:
AIME 2020-International Conference on Artificial Intelligence in Medicine
AIME 2020-International Conference on Artificial Intelligence in Medicine, Aug 2020, Minneapolis, United States. pp.382-391
Artificial Intelligence in Medicine ISBN: 9783030591366
AIME
AIME 2020-International Conference on Artificial Intelligence in Medicine, Aug 2020, Minneapolis, United States. pp.382-391
Artificial Intelligence in Medicine ISBN: 9783030591366
AIME
International audience; Medical data is rarely made publicly available due to high deidentification costs and risks. Access to such data is highly regulated due to it's sensitive nature. These factors impede the development of data-driven advancement
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9179cb38ec105e80d65e6218cecefade
https://inria.hal.science/hal-03158549/file/AIME_2020_Submission.pdf
https://inria.hal.science/hal-03158549/file/AIME_2020_Submission.pdf
Publikováno v:
Business Information Systems Workshops ISBN: 9783030611453
BIS (Workshops)
BIS 2020-International Conference on Business Information Systems
BIS 2020-International Conference on Business Information Systems, Jun 2020, Colorado Springs, United States. pp.324-335
BIS (Workshops)
BIS 2020-International Conference on Business Information Systems
BIS 2020-International Conference on Business Information Systems, Jun 2020, Colorado Springs, United States. pp.324-335
Generating synthetic data represents an attractive solution for creating open data, enabling health research and education while preserving patient privacy. We reproduce the research outcomes obtained on two previously published studies, which used p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4eb3ee3d7836164ced2f5c9a7c4056aa
https://doi.org/10.1007/978-3-030-61146-0_26
https://doi.org/10.1007/978-3-030-61146-0_26
Publikováno v:
AIDR
This paper builds on the results of the ESANN 2019 conference paper "Privacy Preserving Synthetic Health Data" [16], which develops metrics for assessing privacy and utility of synthetic data and models. The metrics laid out in the initial paper show