Zobrazeno 1 - 10
of 42 049
pro vyhledávání: '"Salehi, P."'
Autor:
Alireza Sheikhi, Mina Dehqan Menshadi
Publikováno v:
پیکره, Vol 11, Iss 30, Pp 1-28 (2023)
Problem Definition: The media power of the residential architecture of Shiraz is obvious to everyone due to the historical seniority, the character of the rulers, and the people of this land. The two houses namely «Mohtasham» and «Salehi» are aut
Externí odkaz:
https://doaj.org/article/d689477b6e724ceea9449c0567e74df0
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Yousseef, Amal, Satam, Shalaka, Latibari, Banafsheh Saber, Pacheco, Jesus, Salehi, Soheil, Hariri, Salim, Satam, Partik
Autonomous vehicles (AVs) are poised to revolutionize modern transportation, offering enhanced safety, efficiency, and convenience. However, the increasing complexity and connectivity of AV systems introduce significant cybersecurity challenges. This
Externí odkaz:
http://arxiv.org/abs/2412.15348
Autor:
Hofhammer, Florian, Wang, Qinying, Bhattacharyya, Atri, Salehi, Majid, Crispo, Bruno, Egele, Manuel, Payer, Mathias, Busch, Marcel
Dynamic analysis and especially fuzzing are challenging tasks for embedded firmware running on modern low-end Microcontroller Units (MCUs) due to performance overheads from instruction emulation, the difficulty of emulating the vast space of availabl
Externí odkaz:
http://arxiv.org/abs/2412.12746
Bilevel learning has gained prominence in machine learning, inverse problems, and imaging applications, including hyperparameter optimization, learning data-adaptive regularizers, and optimizing forward operators. The large-scale nature of these prob
Externí odkaz:
http://arxiv.org/abs/2412.12049
Autor:
Salehi, Mohammadreza, Apostolikas, Nikolaos, Gavves, Efstratios, Snoek, Cees G. M., Asano, Yuki M.
In the realm of novelty detection, accurately identifying outliers in data without specific class information poses a significant challenge. While current methods excel in single-object scenarios, they struggle with multi-object situations due to the
Externí odkaz:
http://arxiv.org/abs/2412.11148
Parametric Bayesian modeling offers a powerful and flexible toolbox for scientific data analysis. Yet the model, however detailed, may still be wrong, and this can make inferences untrustworthy. In this paper we study nonparametrically perturbed para
Externí odkaz:
http://arxiv.org/abs/2412.10683
Autor:
Bogensperger, Lea, Ehrhardt, Matthias J., Pock, Thomas, Salehi, Mohammad Sadegh, Wong, Hok Shing
We consider a bilevel learning framework for learning linear operators. In this framework, the learnable parameters are optimized via a loss function that also depends on the minimizer of a convex optimization problem (denoted lower-level problem). W
Externí odkaz:
http://arxiv.org/abs/2412.06436
Autor:
Glos, Adam, Salehi, Özlem
Efficient and effective compilation of quantum circuits remains an important aspect of executing quantum programs. In this paper, we propose a generic compilation framework particularly suitable for limited connectivity, that extends many of the know
Externí odkaz:
http://arxiv.org/abs/2412.06909